The invention discloses a method for realizing electronic material defect detection based on die-cutting machine vision, which comprises the following steps: (a) detection template loading; (b) detecting the target transfer; (c) sensor monitoring; (d) image capture (E); target recognition; image processing; (f) (G) two the value of the treatment; (H) statistical data analysis and detection. The method adopts the non-contact optical sensor system, using machines instead of human eyes to measure and judge system, use a CCD camera to capture the target measurement object image, target image pixel distribution and measuring the brightness and color information into digital image signals; industrial control systems operate on these signals, feature extraction of target measurement finally, according to the tolerance; and other conditions of the output, to control the movement of the equipment, to achieve the core requirements of online detection of product defects and size measurement, can ensure the precision and speed of measurement, and the reliability of the industrial field environment.
【技术实现步骤摘要】
一种基于机器视觉的电子模切料缺陷检测实现方法
本专利技术涉及一种基于机器视觉的电子模切料缺陷检测实现方法。
技术介绍
随着工业互联网、传感技术及新一代信息技术的颠覆式发展,世界主要制造业大国都竞相推出其智能制造或工业互联网战略,颇具代表性的有:美国的先进制造战略;德国的工业4.0;中国制造2025。通过物联网、互联网、大数据、云计算、宽带网络等技术,通过接入传感器,实现对物理设备的信息感知、网络通信、远程控制和协作,实现工业数据流交互、硬件/软件之间的智能通信及安全控制。伴随着自动化技术、电子信息技术与计算机技术的深入发展,工业控制现场的可视化交互能力与信息综合处理能力已经成为工业自动化新的发展方向,机器视觉技术应运而生。机器视觉是近年来发展起来的一项新技术,它利用光机电一体化的手段使机器具有视觉的功能。将机器视觉引入检测领域,可以在很多场合实现在线高精度高速测量。它主要利用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。机器视觉伴随计算机技术、现场总线技术的发展,技术日臻成熟,已成为现代加工制造业不可或缺的技术装备系统,广泛应用于食品、化妆品、制药、金属加工、电子制造、印包装、汽车制造等行业。在现代工业自动化生产中,涉及到各种各样的检查、测量,比如印刷电路板的视觉检查、容器容积或杂质检测、机械零件的自动识别分类和几何尺寸测量、产品包装上的条码和字符识别等。通常这种带有高度重复性和智能性的工作只能靠人工检测来完成,在给工厂增加巨大的人工成本和管理成本的同时,仍然不能保证100%的检验合格率。如微小尺寸 ...
【技术保护点】
一种基于机器视觉的电子模切料缺陷检测实现方法,其特征在于包括以下步骤:(a)检测模板载入:根据所需要检测的模切物料目标物,将相对应的模切物料目标物的模板载体放置到检测标定位置;(b)检测目标传送:通过电子模切料缺陷检测机器视觉系统将所述模切物料目标物自动传送到达模板载体上,并将所述模切物料目标物的模型导入到大数据分析平台内,为检测工作做准备;(c)传感器监测:(d)图像抓取:先通过工控系统控制目标相机控制系统,开始光源、CCD传感设备的参数校正,然后相机控制系统实时探测、测量,对所述模切物料目标物进行图像抓取,同时,相机控制系统会在工控系统配合下调节相机不同的光源角度进行连续图像抓取采集,确保后续处理图像的算法的判定精度;(e)目标识别:先采用三角形匹配算法进行特征提取,实现了产品缺陷特征的高效提取;然后采用Blob分析方法进行图像识别,可从图像背景中分离出目标并检测目标,实现目标物形状、缺陷识别,计算出目标物面积;最后采用LBP算法进行纹理识别,分辨出所述模切物料目标物的表面纹理处理工艺;(f)图像处理:相机控制系统通过嵌入式机器视觉控制平台对采集的目标图像进行处理,具体过程如下:第 ...
【技术特征摘要】
1.一种基于机器视觉的电子模切料缺陷检测实现方法,其特征在于包括以下步骤:(a)检测模板载入:根据所需要检测的模切物料目标物,将相对应的模切物料目标物的模板载体放置到检测标定位置;(b)检测目标传送:通过电子模切料缺陷检测机器视觉系统将所述模切物料目标物自动传送到达模板载体上,并将所述模切物料目标物的模型导入到大数据分析平台内,为检测工作做准备;(c)传感器监测:(d)图像抓取:先通过工控系统控制目标相机控制系统,开始光源、CCD传感设备的参数校正,然后相机控制系统实时探测、测量,对所述模切物料目标物进行图像抓取,同时,相机控制系统会在工控系统配合下调节相机不同的光源角度进行连续图像抓取采集,确保后续处理图像的算法的判定精度;(e)目标识别:先采用三角形匹配算法进行特征提取,实现了产品缺陷特征的高效提取;然后采用Blob分析方法进行图像识别,可从图像背景中分离出目标并检测目标,实现目标物形状、缺陷识别,计算出目标物面积;最后采用LBP算法进行纹理识别,分辨出所述模切物料目标物的表面纹理处理工艺;(f)图像处理:相机控制系统通过嵌入式机器视觉控制平台对采集的目标图像进行处理,具体过程如下:第一步:将抓取的图像进行增强处理,先采用直方图均衡化处理算法进行第一次图像增强处理,把已知灰度概率分布图像中的像素灰度作特定映射变换,使它变成一幅具有均匀灰度概率分布的新图像,有效改善图像清晰度,然后采用小波变换和开运算进行第二次图像增强处理,进一步改善图像清晰度;第二步:将上述增强处理后的图像进行平滑处理,采用自适应平滑滤波算法,先通过平滑滤波的迭代运算使信号的边缘得到锐化,然后经过多次迭代运算后,图像按边缘分块实现自适应平滑;第三步:在完成图像平滑处理后,利用RGB模型对图像进行灰化处理,将24位的图像数据转换为8位的图像数据,简化图像分析处理;第四步:将上述灰化处理后的图像进行分割处理,采用空间域区域增长分割方法,对具有相似性质的像素连通集构成分割区域,将该图像进行区域等分分割,得到M个局部图像区域,每个局部图像区域的尺寸大小相同,均为A*B,其中A和B均为相机控制系统预设值,每个局部图像区域对应于所述模切物料目标物的相对应表面;第五步:在图像分割处理完成后,对图像进行边缘锐化处理,加强图像中的轮廓边缘和细节,形成...
【专利技术属性】
技术研发人员:毛伟信,
申请(专利权)人:杭州字节信息技术有限公司,
类型:发明
国别省市:浙江,33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。