【技术实现步骤摘要】
一种基于机器视觉和散斑的测量方法及人体测量方法
本专利技术涉及一种基于机器视觉和散斑的测量方法及人体测量方法。
技术介绍
非接触式测量是以光电、电磁等技术为基础,在不接触被测物体表面的情况下,得到物体面积、体积等参数信息的测量方法。典型的非接触式测量方法具有激光三角法、超声测量法等等。随着机器视觉的发展,机器视觉在测量领域也逐渐显现出巨大的潜力,例如:流道截面计算、曲面面积计算以及不规则体积计算等。目前,市场上具有一种基于机器视觉的三维影像测量,它是利用CCD采集变焦镜下样品的影像,再配合XYZ轴移动平台及自动变焦镜,并运用影像分析原理,通过计算机处理影像信号,对科研生产零件进行精密的几何数据的测量。然而,此种三维影像测量方法对被测物体的体积具有严格的限制,并且测量精度较低,应用场合有限。鉴于上述问题,有必要提供一种新的基于机器视觉的测量方法,以解决上述问题。
技术实现思路
本专利技术的目的在于提供一种基于机器视觉和散斑的测量方法,该测量方法能够测量大型物体的面积或体积,测量精度较高,且为非接触式测量,应用场合广泛。为达到上述目的,本专利技术提供如下技术方案:一种基于机器视觉和散斑的测量方法,包括如下步骤:S1:图像数据采集,利用散斑投射器向被测物体投射随机的散斑图案,并由所述测量头的相机同步拍摄被测物体图像;S2:被测物体三维点云重建,对每一测量头的相机采集到的图像数据进行数字图像相关运算,并计算出待测物体表面密集点的三维坐标,实现待测物体的三维点云重建;S3:被测物体三维点云拼接配准,对不同测量头获得的三维点云进行拼接配准,以获得被测物体的完整点云模型;S ...
【技术保护点】
一种基于机器视觉和散斑的测量方法,其特征在于,包括如下步骤:S1:图像数据采集,利用散斑投射器向被测物体投射随机的散斑图案,并由所述测量头的相机同步拍摄被测物体图像;S2:被测物体三维点云重建,对每一测量头的相机采集到的图像数据进行数字图像相关运算,并计算出待测物体表面密集点的三维坐标,实现待测物体的三维点云重建;S3:被测物体三维点云拼接配准,对不同测量头获得的三维点云进行拼接配准,以获得被测物体的完整点云模型;S4:有限元分割求和,对完整点云模型进行有限元网格划分,并通过微元法积分求和,从而得到被测物体的面积或体积。
【技术特征摘要】
1.一种基于机器视觉和散斑的测量方法,其特征在于,包括如下步骤:S1:图像数据采集,利用散斑投射器向被测物体投射随机的散斑图案,并由所述测量头的相机同步拍摄被测物体图像;S2:被测物体三维点云重建,对每一测量头的相机采集到的图像数据进行数字图像相关运算,并计算出待测物体表面密集点的三维坐标,实现待测物体的三维点云重建;S3:被测物体三维点云拼接配准,对不同测量头获得的三维点云进行拼接配准,以获得被测物体的完整点云模型;S4:有限元分割求和,对完整点云模型进行有限元网格划分,并通过微元法积分求和,从而得到被测物体的面积或体积。2.如权利要求1所述的基于机器视觉和散斑的测量方法,其特征在于:在步骤S1之前,所述基于机器视觉和散斑的测量方法还包括步骤S0:多相机全局标定,将标定板放置在测量视场中并摆放出不同姿态,然后所有测量头的相机同步采集不同姿态下的图像,并对采集的图像进行处理,从而得到所有测量头的相机的内部参数和外部参数。3.如权利要求2所述的基于机器视觉和散斑的测量方法,其特征在于:在所述步骤S0中,所述标定板至少具有24种不同位姿,以提高相机标定精度。4.如权利要求1所述的基于机器视觉和散斑的测量方法,其特征在于:所述步骤S1还包括步骤S11:分析环境光强,并判断是否需要进行补光。5.如权利要求1所述的基于机器视觉和散斑的测量方法,其特征在于:所述步骤S3还包括步骤S31:点云优化过滤,首先对多幅点云法向进行滤波,然后通过两幅点云的双向查找来寻找种子点,并在种子点的法向寻找两幅点云中对应的k邻域,计算邻域点的加权和。6.如权利要求5所述的基于机器视觉和散斑的测量方法,其特征在于:对于给定点pi,其最近邻域为Nk(pi),则滤波后的法向为其中权函数T是给定的角度阈值。7.如权利要求6所述的基于机器视觉和散斑的测量方法,其特征在于:所述T的值为0.75。8.如权利要求5所述的基于机器视觉和散斑的测量方法,其特征在于:所述步骤S3还包括步骤S32:点云三角化封装,用互不相交的三角形来近似表示点集形成的曲面。9.如权利要求8所述的基于机器视觉和散斑的测量方法,其特征在于:所述步骤S3还包括步骤S33:封装实体化,利用Gregory曲面片构建精确光滑贴合曲面,并填充为实体。10.如权利要求9所述的基于机器视觉和散斑的测量方法,其特征在于:所述Grego...
【专利技术属性】
技术研发人员:张龙,刘建立,邢渊博,王明尧,刘志国,黄众众,
申请(专利权)人:苏州西博三维科技有限公司,
类型:发明
国别省市:江苏,32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。