一种基于机器视觉和散斑的测量方法及人体测量方法技术

技术编号:15537702 阅读:204 留言:0更新日期:2017-06-05 05:53
本发明专利技术揭示了一种基于机器视觉和散斑的测量方法,包括如下步骤:S1:图像数据采集;S2:被测物体三维点云重建;S3:被测物体三维点云拼接配准;S4:有限元分割求和,对完整点云模型进行有限元网格划分,并通过微元法积分求和,从而得到被测物体的面积或体积。相较于现有技术,本发明专利技术基于机器视觉和散斑的测量方法能够测量大型物体的面积或体积,测量精度较高,且为非接触式测量,应用场合广泛。

【技术实现步骤摘要】
一种基于机器视觉和散斑的测量方法及人体测量方法
本专利技术涉及一种基于机器视觉和散斑的测量方法及人体测量方法。
技术介绍
非接触式测量是以光电、电磁等技术为基础,在不接触被测物体表面的情况下,得到物体面积、体积等参数信息的测量方法。典型的非接触式测量方法具有激光三角法、超声测量法等等。随着机器视觉的发展,机器视觉在测量领域也逐渐显现出巨大的潜力,例如:流道截面计算、曲面面积计算以及不规则体积计算等。目前,市场上具有一种基于机器视觉的三维影像测量,它是利用CCD采集变焦镜下样品的影像,再配合XYZ轴移动平台及自动变焦镜,并运用影像分析原理,通过计算机处理影像信号,对科研生产零件进行精密的几何数据的测量。然而,此种三维影像测量方法对被测物体的体积具有严格的限制,并且测量精度较低,应用场合有限。鉴于上述问题,有必要提供一种新的基于机器视觉的测量方法,以解决上述问题。
技术实现思路
本专利技术的目的在于提供一种基于机器视觉和散斑的测量方法,该测量方法能够测量大型物体的面积或体积,测量精度较高,且为非接触式测量,应用场合广泛。为达到上述目的,本专利技术提供如下技术方案:一种基于机器视觉和散斑的测量方法,包括如下步骤:S1:图像数据采集,利用散斑投射器向被测物体投射随机的散斑图案,并由所述测量头的相机同步拍摄被测物体图像;S2:被测物体三维点云重建,对每一测量头的相机采集到的图像数据进行数字图像相关运算,并计算出待测物体表面密集点的三维坐标,实现待测物体的三维点云重建;S3:被测物体三维点云拼接配准,对不同测量头获得的三维点云进行拼接配准,以获得被测物体的完整点云模型;S4:有限元分割求和,对完整点云模型进行有限元网格划分,并通过微元法积分求和,从而得到被测物体的面积或体积。进一步的:在步骤S1之前,所述基于机器视觉和散斑的测量方法还包括步骤S0:多相机全局标定,将标定板放置在测量视场中并摆放出不同姿态,然后所有测量头的相机同步采集不同姿态下的图像,并对采集的图像进行处理,从而得到所有测量头的相机的内部参数和外部参数。进一步的:在所述步骤S0中,所述标定板至少具有24种不同位姿,以提高相机标定精度。进一步的:所述步骤S1还包括步骤S11:分析环境光强,并判断是否需要进行补光。进一步的:所述步骤S3还包括步骤S31:点云优化过滤,首先对多幅点云法向进行滤波,然后通过两幅点云的双向查找来寻找种子点,并在种子点的法向寻找两幅点云中对应的k邻域,计算邻域点的加权和。进一步的:对于给定点pi,其最近邻域为Nk(pi),则滤波后的法向为其中权函数T是给定的角度阈值。进一步的:所述T的值为0.75。进一步的:所述步骤S3还包括步骤S32:点云三角化封装,用互不相交的三角形来近似表示点集形成的曲面。进一步的:所述步骤S3还包括步骤S33:封装实体化,利用Gregory曲面片构建精确光滑贴合曲面,并填充为实体。进一步的:所述Gregory曲面片是由一组控制点确定的,即G={P0,P1,P2,P01,P02,P12,P21,P20,P02,q01,q02,q12,q21,q20,q02},其中{P0,P1,P2}为角控制点,{P0,P1,P2,P01,P02}为边界控制点,{q01,q02,q12,q21,q20,q02}为内部控制点,记(u|v)为Gregory三角域中参数点的中心坐标,则对Gregory三角域的插值函数GT(u|v)=w3P0+u3P1+v3P0+…,其中u+v+w=1。进一步的:所述基于机器视觉和散斑的测量方法还包括步骤S5:算出被测物体质量,根据标准材料库的参数计算出被测物体的质量。进一步地,所述基于机器视觉和散斑的测量方法还包括如下步骤:S6:坐标转换,对重建后的三维点云数据进行3-2-1坐标转换,并选择高度方向为z轴方向;S7:截面分割,选取一系列垂直于z轴的截面进行分割;S8:获取邻域内的点云在截平面上投影的平面坐标,并将平面内所有坐标点顺次连接,直至折线封闭;S9:计算封闭折线的周长其中n为邻域内点的总数。本专利技术还揭示了一种基于机器视觉和散斑的人体测量方法,包括如下步骤:S1:图像数据采集,利用散斑投射器向被测人体指定局部投射随机的散斑图案,并由所述测量头的相机同步拍摄被测人体指定局部的图像;S2:被测人体指定局部三维点云重建,对拍摄到指定局部的测量头的相机所采集到的图像数据进行数字图像相关运算,并计算出待测人体指定局部表面密集点的三维坐标,实现待测人体指定局部的三维点云重建;S3:被测人体指定局部三维点云拼接配准,对不同测量头获得的三维点云进行拼接配准,以获得被测人体指定局部的完整点云模型;S4:对指定局部进行有限元分割求和,从而得到被测人体指定局部的面积或体积。进一步地,所述基于机器视觉和散斑的人体测量方法还包括如下步骤:S5:坐标转换,对重建后的三维点云数据进行3-2-1坐标转换,并选择人体高度方向为z轴方向;S6:截面分割,选取一系列垂直于z轴的截面进行分割;S7:获取邻域内的点云在截平面上投影的平面坐标,并将平面内所有坐标点顺次连接,直至折线封闭;S8:计算封闭折线的周长其中n为邻域内点的总数。本专利技术的有益效果在于:本专利技术基于机器视觉和散斑的测量方法能够测量大型物体的面积或体积,测量精度较高,且为非接触式测量,应用场合广泛。上述说明仅是本专利技术技术方案的概述,为了能够更清楚了解本专利技术的技术手段,并可依照说明书的内容予以实施,以下以本专利技术的较佳实施例并配合附图详细说明如后。附图说明图1所示为本专利技术基于机器视觉和散斑的测量方法的流程示意图。图2所示为Gregory曲面片。图3为角度阈值T为0.4时的滤波效果图。图4为角度阈值T为0.75时的滤波效果图。图5为角度阈值T为0.9时的滤波效果图。图6为通过截面分割及围长提取结果的效果图。具体实施方式下面结合附图和实施例,对本专利技术的具体实施方式作进一步详细描述。以下实施例用于说明本专利技术,但不用来限制本专利技术的范围。请参见图1所示,本专利技术基于机器视觉和散斑的测量方法,包括如下步骤:S0:多相机全局标定。首先,将标定板放置在测量视场中并摆放出不同位姿,然后所有测量头的相机同步采集不同位姿下的图像,并对采集的图像进行处理,从而获得所有测量头的相机的内部参数和外部参数。所述测量视场为所有测量头的相机的公共视野。所述标定板的正反面都均匀印制有环形的编码标志点和圆点型的非编码标志点。标定时,所述标定板至少具有24种不同位姿,以提高相机标定精度。S1:图像数据采集。首先,分析环境光强,并判断是否需要进行补光,以便保证采集到的图像数据清晰准确。然后,利用散斑投射器向被测物体投射随机的散斑图案,并由所述测量头的相机同步拍摄被测物体的图像。所述被测物体位于所有测量头的相机的公共视野内。在本实施例中,环境光强是通过采集到的图像的灰度值来判断的。当灰度值超过阈值时,则表明环境光强较强,此时调节镜头光圈,减少进光量;当灰度值低于阈值时,则表明环境光强较弱,此时打开补光灯,进行补光。S2:被测物体三维点云重建。对每一测量头的相机采集到的图像数据进行数字图像相关运算,并计算出待测物体表面密集点的三维坐标,实现待测物体的三维点云重建。S3:被测物体三维点云拼接配准。首先,对不同测量头获得的本文档来自技高网...
一种基于机器视觉和散斑的测量方法及人体测量方法

【技术保护点】
一种基于机器视觉和散斑的测量方法,其特征在于,包括如下步骤:S1:图像数据采集,利用散斑投射器向被测物体投射随机的散斑图案,并由所述测量头的相机同步拍摄被测物体图像;S2:被测物体三维点云重建,对每一测量头的相机采集到的图像数据进行数字图像相关运算,并计算出待测物体表面密集点的三维坐标,实现待测物体的三维点云重建;S3:被测物体三维点云拼接配准,对不同测量头获得的三维点云进行拼接配准,以获得被测物体的完整点云模型;S4:有限元分割求和,对完整点云模型进行有限元网格划分,并通过微元法积分求和,从而得到被测物体的面积或体积。

【技术特征摘要】
1.一种基于机器视觉和散斑的测量方法,其特征在于,包括如下步骤:S1:图像数据采集,利用散斑投射器向被测物体投射随机的散斑图案,并由所述测量头的相机同步拍摄被测物体图像;S2:被测物体三维点云重建,对每一测量头的相机采集到的图像数据进行数字图像相关运算,并计算出待测物体表面密集点的三维坐标,实现待测物体的三维点云重建;S3:被测物体三维点云拼接配准,对不同测量头获得的三维点云进行拼接配准,以获得被测物体的完整点云模型;S4:有限元分割求和,对完整点云模型进行有限元网格划分,并通过微元法积分求和,从而得到被测物体的面积或体积。2.如权利要求1所述的基于机器视觉和散斑的测量方法,其特征在于:在步骤S1之前,所述基于机器视觉和散斑的测量方法还包括步骤S0:多相机全局标定,将标定板放置在测量视场中并摆放出不同姿态,然后所有测量头的相机同步采集不同姿态下的图像,并对采集的图像进行处理,从而得到所有测量头的相机的内部参数和外部参数。3.如权利要求2所述的基于机器视觉和散斑的测量方法,其特征在于:在所述步骤S0中,所述标定板至少具有24种不同位姿,以提高相机标定精度。4.如权利要求1所述的基于机器视觉和散斑的测量方法,其特征在于:所述步骤S1还包括步骤S11:分析环境光强,并判断是否需要进行补光。5.如权利要求1所述的基于机器视觉和散斑的测量方法,其特征在于:所述步骤S3还包括步骤S31:点云优化过滤,首先对多幅点云法向进行滤波,然后通过两幅点云的双向查找来寻找种子点,并在种子点的法向寻找两幅点云中对应的k邻域,计算邻域点的加权和。6.如权利要求5所述的基于机器视觉和散斑的测量方法,其特征在于:对于给定点pi,其最近邻域为Nk(pi),则滤波后的法向为其中权函数T是给定的角度阈值。7.如权利要求6所述的基于机器视觉和散斑的测量方法,其特征在于:所述T的值为0.75。8.如权利要求5所述的基于机器视觉和散斑的测量方法,其特征在于:所述步骤S3还包括步骤S32:点云三角化封装,用互不相交的三角形来近似表示点集形成的曲面。9.如权利要求8所述的基于机器视觉和散斑的测量方法,其特征在于:所述步骤S3还包括步骤S33:封装实体化,利用Gregory曲面片构建精确光滑贴合曲面,并填充为实体。10.如权利要求9所述的基于机器视觉和散斑的测量方法,其特征在于:所述Grego...

【专利技术属性】
技术研发人员:张龙刘建立邢渊博王明尧刘志国黄众众
申请(专利权)人:苏州西博三维科技有限公司
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1