The invention discloses a parameter updating method of expressway traffic flow based on the fusion of multi-source data, which comprises the following steps: (1) extraction of traffic flow data and meteorological data meteorological detection equipment and detection equipment from the corresponding traffic flow, and the time and space of data; (2) the missing data screening; (3) to repair the modeling of data; (4) to repair the data; (5) return data normalization; will return the data into the corresponding position of the normalized X matrix, get the complete data matrix. The beneficial effects of the invention are: make full use of the data, including data missing data, the missing data correction; considering the impact of weather factors on traffic flow, can improve the repair accuracy; the proposed algorithm is simple and can satisfy the requirements of real time processing.
【技术实现步骤摘要】
一种基于多源融合数据的高速公路交通流参数修正方法
本专利技术涉及智能交通
,尤其是一种基于多源融合数据的高速公路交通流参数修正方法。
技术介绍
随着信息技术的不断发展,交通运营管理中心不仅可以通过各种采集设备获取大量的交通流参数数据,尤其是高速公路上安装大量的固定检测器,可以实时检测交通流参数包括:交通量、速度和占有率,且能够获取大量的气象数据。但固定检测器由于通信、通电等原因常常发生数据缺失问题,为后续的交通数据挖掘带来较大困难。现有技术中,交通流参数修复的方法包括时间序列及神经网络等各种智能算法。然而,这些算法不能够充分挖掘数据信息,并且多采用单一的数据源,缺乏考虑天气等因素对交通流的影响,不能够满足智能交通系统的发展要求。
技术实现思路
本专利技术所要解决的技术问题在于,提供一种基于多源融合数据的高速公路交通流参数修正方法,可以对缺失数据进行修正,提高修复精度,满足实时处理的需求。为解决上述技术问题,本专利技术提供一种基于多源融合数据的高速公路交通流参数修正方法,包括如下步骤:(1)从相应的交通流检测设备和气象检测设备中提取交通流参数数据和气象数据,并对数据进行时间和空间维度的匹配;(2)对缺失数据进行筛选;(3)对数据进行修复建模;(4)对数据进行修复;(5)数据返归一化;将返归一化结果数据插入到矩阵X的相应位置,得到完整的数据矩阵。优选的,步骤(1)中,提取交通流参数数据,根据检测设备的经纬度位置提取距离最近的气象监测设备中的气象数据,完成空间维度的匹配;选取时间间隔,将两种数据进行转换,使两种数据具有相同的时间间隔,时间间隔取两种不同数据的时 ...
【技术保护点】
一种基于多源融合数据的高速公路交通流参数修正方法,其特征在于,包括如下步骤:(1)从相应的交通流检测设备和气象检测设备中提取交通流参数数据和气象数据,并对数据进行时间和空间维度的匹配;(2)对缺失数据进行筛选;(3)对数据进行修复建模;(4)对数据进行修复;(5)数据返归一化;将返归一化结果数据插入到矩阵X的相应位置,得到完整的数据矩阵。
【技术特征摘要】
1.一种基于多源融合数据的高速公路交通流参数修正方法,其特征在于,包括如下步骤:(1)从相应的交通流检测设备和气象检测设备中提取交通流参数数据和气象数据,并对数据进行时间和空间维度的匹配;(2)对缺失数据进行筛选;(3)对数据进行修复建模;(4)对数据进行修复;(5)数据返归一化;将返归一化结果数据插入到矩阵X的相应位置,得到完整的数据矩阵。2.如权利要求1所述的基于多源融合数据的高速公路交通流参数修正方法,其特征在于,步骤(1)中,提取交通流参数数据,根据检测设备的经纬度位置提取距离最近的气象监测设备中的气象数据,完成空间维度的匹配;选取时间间隔,将两种数据进行转换,使两种数据具有相同的时间间隔,时间间隔取两种不同数据的时间间隔的公倍数,完成时间维度的匹配。3.如权利要求1所述的基于多源融合数据的高速公路交通流参数修正方法,其特征在于,步骤(2)中,对缺失数据进行筛选的具体步骤为:设数据矩阵其中该矩阵包含m行n列,其中m行表示时间段的个数,n列为相应的交通流参数和气象参数,表示第i列第j行的数据;从数据矩阵中筛选出缺失数据,将第i列第j行的缺失数据定义为xij。4.如权利要求1所述的基于多源融合数据的高速公路交通流参数修正方法,其特征在于,步骤(3)中,对数据进行修复建模的具体步骤为:(a)记录缺失数据所在行的编号集合M,将其从数据矩阵X中提出出来为数据矩阵Xmiss,其余数据组成新的数据矩阵X′,然后将矩阵进行归一化处理;针对数据矩阵X′,随机产生30%的交通流缺失数据,记录缺失数据所在行的编号集合M′,将其从数据矩阵X′中提取出来构成新的数据矩阵为X′test,剩余数据矩阵为X′train;(b)基于多元时间序列模型和数据矩阵X′train分别建立各项交通流数据与气象数据的回归方程,包括模型一:流量与湿度、风速、降雨量、温度的回归方程;模型二:速度与流量、湿度、风速、降雨量、温度的回归方程;模型三:占有率与速度、流量、湿度、风速、降雨量、温度的回归方程;所述的多元时间序列如下式:yt=δ+Φ1yt-1+…+Φpyt-p+εt-Θ1εt-1-…-Θpεt-p式中:yt=(y1t,…,ykt)′,t=0,1,…表示k维时间...
【专利技术属性】
技术研发人员:李林超,张健,冉斌,张小丽,曲栩,黄帅凤,
申请(专利权)人:东南大学,
类型:发明
国别省市:江苏,32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。