一种疲劳驾驶检测方法及系统技术方案

技术编号:15505980 阅读:178 留言:0更新日期:2017-06-04 01:17
本发明专利技术提供一种疲劳驾驶检测方法及系统,该方法包括第一步:输入采集的驾驶员视频图像,利用决策树分类器对视频图像进行人脸检测获取人脸区域;第二步:利用平均脸各个人脸区域的初始关键点形状,从初始关键点形状开始,进行每个关键点相对于当前形状偏差的迭代运算;第三步:提取关键点的形状对应的关键点位置处的纹理特征,利用预设分类器判断纹理特征是否为预设的佩戴眼镜的状态,并根据判断结果检测驾驶员疲劳状态。本发明专利技术的有益效果是:本发明专利技术首先通过人脸检测技术获取人脸区域,然后基于此区域定位和追踪到人脸关键点,再根据眼睛周围区域的纹理特征判别司机是否戴了墨镜,进而防止因驾驶员佩戴墨镜导致误判降低疲劳驾驶检测的准确性。

Method and system for detecting fatigue driving

The invention provides a driver fatigue detection method and system, the method includes the first step: the driver input video image acquisition, video image acquisition face detection face region using decision tree classifier; the second step: the initial key points of each face region average face shape, starting from the initial shape of each key point, compared with the current iteration point shape deviation; the third step: texture feature key point position corresponding to the key point of shape extraction, using pre classifier to determine whether the default texture features of wearing glasses, and according to the test results to judge the fatigue state of the driver. The beneficial effect of the invention is: firstly, by acquiring the face region of face detection technology, and then the location and tracking of facial feature points based on the texture feature according to the area around the eyes of the judge whether the driver wearing sunglasses, thus preventing misjudgment reduced accuracy due to driver fatigue driving detection leads to wear dark glasses.

【技术实现步骤摘要】
一种疲劳驾驶检测方法及系统
本专利技术涉及计算机视觉
,尤其涉及一种疲劳驾驶检测方法及系统。
技术介绍
为了降低因疲劳驾驶导致的交通事故发生率,疲劳驾驶预警系统广泛应用于驾驶领域。疲劳驾驶预警系统利用驾驶员的面部特征、眼部信号、头部运动性等推断驾驶员的疲劳状态,并进行报警提示和采取相应措施的装置。然而当驾驶员佩戴墨镜后则会降低疲劳驾驶预警系统判断的准确率,进而产生误报。当前的疲劳驾驶预警系统一般包括红外照明元件、滤光元件及摄像头,通过摄像头获取红外图像保证即使在夜间光线较差的情况下,也能获得较清晰的人脸图像,从而判断驾驶员的疲劳状态。然而,当驾驶员佩戴墨镜后,现有的疲劳驾驶预警系统无法准确判断驾驶员的疲劳状态。因为利用波长较短的红外线光源检测照射时佩戴的墨镜直接影响对人眼状态的获取或者不能穿透墨镜,而利用波长较长的红外线光源长时间照射人眼将会造成白内障等眼部疾病。
技术实现思路
本专利技术提供了一种疲劳驾驶检测方法,包括如下步骤:第一步:输入采集的驾驶员视频图像,利用决策树分类器对视频图像进行人脸检测获取人脸区域;第二步:利用平均脸各个人脸区域的初始关键点形状,从初始关键点形状开始,进行每个关键点相对于当前形状偏差的迭代运算,用迭代的偏差结果更新关键点形状直至确定人脸区域内关键点的形状;第三步:提取关键点的形状对应的关键点位置处的纹理特征,利用预设分类器判断纹理特征是否为预设的佩戴眼镜的状态,并根据判断结果检测驾驶员疲劳状态。作为本专利技术的进一步改进,在所述第一步中包括如下步骤:样本采集步骤:确定样本集;决策树生成步骤:初始化样本集中各个样本的权重,生成一个决策树;级联步骤:更新样本权重,迭代决策树最终生成决策树分类器。作为本专利技术的进一步改进,在所述第二步中,将各个人脸区域进行归一化为预设的分辨率,利用关键点检测技术确定平均脸及各个人脸区域的初始关键点形状。作为本专利技术的进一步改进,在所述第二步中,包括如下步骤:特征提取步骤:基于目标人脸区域的初始关键点,提取目标人脸区域的初始关键点形状处的纹理特征;回归步骤:计算目标人脸区域与初始关键点的偏差,利用预设的回归器及目标人脸的初始关键点形状处的纹理特征计算每个关键点的偏差,并以此结果更新目标人脸关键点形状;迭代步骤:计算即要更新后的目标人脸关键点形状与上一次关键点形状结果的偏差,直至最后确定人脸区域的关键点形状。作为本专利技术的进一步改进,在所述特征提取步骤中,基于目标人脸区域的初始关键点,提取目标人脸区域的初始关键点形状处的SIFT特征。本专利技术还提供了一种疲劳驾驶检测系统,包括:人脸检测模块:用于输入采集的驾驶员视频图像,利用决策树分类器对视频图像进行人脸检测获取人脸区域;关键点检测与追踪模块:用于利用平均脸各个人脸区域的初始关键点形状,从初始关键点形状开始,进行每个关键点相对于当前形状偏差的迭代运算,用迭代的偏差结果更新关键点形状直至确定人脸区域内关键点的形状;墨镜识别模块:提取关键点的形状对应的关键点位置处的纹理特征,利用预设分类器判断纹理特征是否为预设的佩戴眼镜的状态,并根据判断结果检测驾驶员疲劳状态。作为本专利技术的进一步改进,在所述人脸检测模块中包括:样本采集模块:用于确定样本集;决策树生成模块:用于初始化样本集中各个样本的权重,生成一个决策树;级联模块:用于更新样本权重,迭代决策树最终生成决策树分类器。作为本专利技术的进一步改进,在关键点追踪模块中包括:预处理模块:用于将各个人脸区域进行归一化为预设的分辨率。作为本专利技术的进一步改进,所述关键点追踪模块包括:特征提取模块:用于基于目标人脸区域的初始关键点,提取目标人脸区域的初始关键点形状处的纹理特征;回归模块:用于计算目标人脸区域与初始关键点的偏差,利用预设的回归器及目标人脸的初始关键点形状处的纹理特征计算每个关键点的偏差,并以此结果更新目标人脸关键点形状;迭代模块:用于计算即要更新后的目标人脸关键点形状与上一次关键点形状结果的偏差,直至最后确定人脸区域的关键点形状。作为本专利技术的进一步改进,在所述特征提取模块中,基于目标人脸区域的初始关键点,提取目标人脸区域的初始关键点形状处的SIFT特征。本专利技术的有益效果是:本专利技术首先通过人脸检测技术获取人脸区域,然后基于此区域定位和追踪到人脸关键点,再根据眼睛周围区域的纹理特征判别司机是否戴了墨镜,进而防止因驾驶员佩戴墨镜导致误判降低疲劳驾驶检测的准确性。附图说明图1是本专利技术的方法流程图。图2是本专利技术的一实施例流程图。具体实施方式如图1所示,本专利技术公开了一种疲劳驾驶检测方法,包括如下步骤:S101:输入采集的驾驶员视频图像,利用决策树分类器对视频图像进行人脸检测获取人脸区域;视频图像中每个视频帧图像包括人脸区域,也包括非人脸区域,为了加快对人脸关键点区域的检测,首先需要对视频图像进行人脸区域检测。该步骤中从视频图像中识别人脸所在的区域,一般可用矩形框等进行标记,这种标记的人脸区域并不是精确的人脸轮廓曲线。S102:利用平均脸各个人脸区域的初始关键点形状,从初始关键点形状开始,进行每个关键点相对于当前形状偏差的迭代运算,用迭代的偏差结果更新关键点形状直至确定人脸区域内关键点的形状;S103:提取关键点的形状对应的关键点位置处的纹理特征,利用预设分类器判断纹理特征是否为预设的佩戴眼镜的状态,并根据判断结果检测驾驶员疲劳状态。本专利技术通过计算平均脸及各个人脸区域的初始关键点的偏差,实现对人脸关键点的校正,进而提取人脸关键点位置处的像素特征,从而判断驾驶员是否佩戴眼镜。步骤S101包括:样本采集步骤:确定样本集;决策树生成步骤:初始化样本集中各个样本的权重,生成一个决策树;级联步骤:更新样本权重,迭代决策树最终生成决策树分类器。具体实施时,可按照如下步骤进行:对于一个训练集{Is,cs},为Is图像集,cs{-1,1}图像为是否为人脸的标注集,-1表示不是人脸,1代表人脸,其中s=1,2,3…,n,s为图像样本的个数。(1)首先初始化每个训练样本的权重Ws;(2)对于每一个k=1,2,3,…,K决策树,<a>.以最小化基于权重的最小二乘误差WMSE,训练决策树Tk其中,Δ和xk是决策树中的每个节点中标注分别是-1和1的训练集的集合,和是两个集合的基于权重的标注真值的均值。<b>更新每个样本的权重<c>归一化权重,使所有权重的和为1,(3)输出级联决策树。pixelintensity(I;i1,i2)=0如果I(i1)<=I(i2);pixelintensity(I;i1,i2)=1如果I(i1)>I(i2);其中,i1、i2分别是归一化后的像素位置,I(*)表示像素亮度。所述根据各个人脸区域获取平均脸,利用关键点检测技术确定平均脸及各个人脸区域的初始关键点形状还包括:将各个人脸区域进行归一化为预设的分辨率。具体实施时,为了便于管理首先将各个人脸区域范围的图像进行归一处理,可选的将所有的人脸区域归一化为统一的分辨率,如50*50。如图2所示,步骤S102包括:S201:基于目标人脸区域的初始关键点,提取目标人脸区域的初始关键点形状处的纹理特征;S202:计算目标人脸区域与初始关键点的偏差,利用预设的回归器及目标人脸的初始关键点形本文档来自技高网...
一种疲劳驾驶检测方法及系统

【技术保护点】
一种疲劳驾驶检测方法,其特征在于,包括如下步骤:第一步:输入采集的驾驶员视频图像,利用决策树分类器对视频图像进行人脸检测获取人脸区域;第二步:利用平均脸各个人脸区域的初始关键点形状,从初始关键点形状开始,进行每个关键点相对于当前形状偏差的迭代运算,用迭代的偏差结果更新关键点形状直至确定人脸区域内关键点的形状;第三步:提取关键点的形状对应的关键点位置处的纹理特征,利用预设分类器判断纹理特征是否为预设的佩戴眼镜的状态,并根据判断结果检测驾驶员疲劳状态。

【技术特征摘要】
1.一种疲劳驾驶检测方法,其特征在于,包括如下步骤:第一步:输入采集的驾驶员视频图像,利用决策树分类器对视频图像进行人脸检测获取人脸区域;第二步:利用平均脸各个人脸区域的初始关键点形状,从初始关键点形状开始,进行每个关键点相对于当前形状偏差的迭代运算,用迭代的偏差结果更新关键点形状直至确定人脸区域内关键点的形状;第三步:提取关键点的形状对应的关键点位置处的纹理特征,利用预设分类器判断纹理特征是否为预设的佩戴眼镜的状态,并根据判断结果检测驾驶员疲劳状态。2.根据权利要求1所述的疲劳驾驶检测方法,其特征在于,在所述第一步中包括如下步骤:样本采集步骤:确定样本集;决策树生成步骤:初始化样本集中各个样本的权重,生成一个决策树;级联步骤:更新样本权重,迭代决策树最终生成决策树分类器。3.根据权利要求1所述的疲劳驾驶检测方法,其特征在于,在所述第二步中,将各个人脸区域进行归一化为预设的分辨率,利用关键点检测技术确定平均脸及各个人脸区域的初始关键点形状。4.根据权利要求1所述的疲劳驾驶检测方法,其特征在于,在所述第二步中,包括如下步骤:特征提取步骤:基于目标人脸区域的初始关键点,提取目标人脸区域的初始关键点形状处的纹理特征;回归步骤:计算目标人脸区域与初始关键点的偏差,利用预设的回归器及目标人脸的初始关键点形状处的纹理特征计算每个关键点的偏差,并以此结果更新目标人脸关键点形状;迭代步骤:计算即要更新后的目标人脸关键点形状与上一次关键点形状结果的偏差,直至最后确定人脸区域的关键点形状。5.根据权利要求4所述的疲劳驾驶检测方法,其特征在于,在所述特征提取步骤中,基于目标人脸区域的初始关键点,提取目标人脸区域的初始关键点形状处的SIFT特征。6....

【专利技术属性】
技术研发人员:刘鹏
申请(专利权)人:开易深圳科技有限公司
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1