一种基于脉冲神经膜系统的快速并行图像细化算法技术方案

技术编号:15504994 阅读:188 留言:0更新日期:2017-06-04 00:44
本发明专利技术提供了一种基于脉冲神经膜系统的快速并行图像细化算法。本发明专利技术基于脉冲神经膜系统分布式、并行性的特点,通过脉冲神经膜系统对图像中的像素点编码,并将满足图像细化算法删除条件的像素点删除。本发明专利技术提供的技术方案可以得到与原图像相同拓扑结构的细化图像,是图像预处理中的关键步骤,并且具有细化效果好、处理速度快的优点。

A fast parallel image thinning algorithm based on spiking neural membrane system

The present invention provides a fast parallel image thinning algorithm based on a spiking neural membrane system. The invention is based on the distributed and parallel characteristics of the pulsed neural membrane system, encodes the pixel points in the image through the pulsed neural membrane system, and removes the pixel points that satisfy the requirements of the image thinning algorithm. The technical scheme provided by the invention can obtain a thinning image with the same topological structure of the original image, and is a key step in the image pretreatment, and has the advantages of good thinning effect and fast processing speed.

【技术实现步骤摘要】
一种基于脉冲神经膜系统的快速并行图像细化算法
本专利技术涉及一种快速并行图像细化算法,特别涉及一种基于脉冲神经膜系统的快速并行图像细化算法。
技术介绍
图像识别的过程包括预处理、特征提取、特征匹配、相似性计算等环节。预处理主要对识别的对象进行去噪、平滑和增强等处理。其中,图像预处理是一个很重要的部分,它的处理效果直接影响后续的特征提取。图像细化算法是使二值图像在保持原有的拓扑结构的前提下删除边缘像素,直到为单像素宽为止,是预处理中的一个重要环节。因为一般的特征提取都是在细化的基础上进行的,如果细化不好,将无法使用常规的特征提取算法提取细节特征信息。因此细化方法的好坏对整个图像识别系统的性能具有重要的意义,所以有必要对细化方法做进一步研究。细化将原始的图像用更少的信息表示出来,并且不改变原始图像的拓扑结构。作为一种降维的图像描述方式,组合了识别目标的轮廓和区域信息,从而基于骨架的目标表示和识别技术成为模式识别和计算机视觉的重要研究内容,被广泛应用于字符识别、指纹识别以及医学图像分析等领域。现有的细化算法主要有:Hilditch细化算法、SPTA细化算法、OPTA细化算法、Pavlidis细化算法、Rosenfeld细化算法。脉冲神经膜系统是受生物神经元处理与传递信息的方式启发设计的神经型计算系统,是一种分布式、并行的、离散的计算模型。已经证明脉冲神经膜系统具有强大的计算能力,并且大多数模型都是图灵等价的。同时在解决计算困难问题方面也显示出了巨大的潜力。传统的细化算法存在以下缺点:细化分支过多,细化结果不稳定,不能反映目标的主体结构;不能保证细化结果为单像素宽度。
技术实现思路
为了解决现有的算法缺点,本专利技术提出了一种基于脉冲神经膜系统的快速并行图像细化算法,本专利技术基于脉冲神经网络的分布式、并行性的特点,其通过将满足图像细化算法删除条件的黑色像素点变为白色像素,迭代对图像做细化操作,直到没有满足删除条件的像素点为止。本专利技术所采用的技术方案如下:一种基于脉冲神经膜系统的快速并行图像细化算法,包括以下部分:A、对二值图像中的每个像素点编码;B、根据快速并行细化算法中删除黑色像素点的条件,找出每一种符合删除条件点的编码,给出这些编码的集合,即删除集合DEL1、DEL2;C、建立图像细化脉冲神经膜系统。部分A中,所述的像素点编码是指:对于除边缘像素点以外的每个像素点,将其设为P0,其周围相邻的八个像素点按照时钟顺序分别设为P1、P2、P3、P4、P5、P6、P7、P8,假设图像中第i行第j列的像素点标记为(i,j),当像素点为黑色像素时Hr=0,当像素点为白色像素时Hr=1,则对(i,j)像素点的编码为:部分B中,所述的删除集合是指:令N(P0)表示P0的邻点为黑色像素点的个数,S(P0)表示以P1、P2、P3、P4、P5、P6、P7、P8、P1为序时这些点的值从0到1变化的次数,细化算法分为两个步骤,第一步,将所有满足以下四种条件的像素点列出,建立删除集合DEL1:2≦N(P0)≦6、S(P0)=1、P1×P3×P5=0、P3×P5×P7=0,第二步,将所有满足以下四种条件的像素点列出,建立删除集合DEL2:2≦N(P0)≦6、S(P0)=1、P1×P3×P7=0、P1×P5×P7=0。部分C中,所述的脉冲神经膜系统是指:对于p×q大小的图像,建立度为(p×q)+2的脉冲神经膜系统,∏=(O,σ11,σ12,...,σpq,σ1,σ2,syn,1),其中(1)O={a}为单字母集合,a表示一个脉冲(2)σ1=(512,a513a*/a513→a512;1),σ2=(0,a1024a*/a1024→a1024;1)σij=(nij,Rij),i∈{1,…,p},j∈{1,…,q},其中,k∈{1,…,q},j∈{1,…,p}对于其他的(i,j)(3)syn1={<1,(i,j),1>∣i∈{2,…,p-1},j∈{2,…,q-1}}syn2={<2,(i,j),1>∣i∈{2,…,p-1},j∈{2,…,q-1}},σ1是脉冲神经膜系统的输入神经元,输入一个正整数,代表图像细化算法的迭代次数。本专利技术提供的技术方案带来的有益效果是:本专利技术将快速并行细化算法和脉冲神经膜系统相结合,充分利用脉冲神经膜系统的并行性,通过脉冲神经膜系统,对要处理的二值图像中的每一个像素点编码,通过几次迭代操作将满足删除条件的黑色像素点删除,直到没有可以删除的像素点为止,从而对图像完成细化操作,使得细化后的图像保持原始图像的拓扑结构,并用更少的信息量表示。附图说明为了更清楚地说明本专利技术的技术方案,下面将对
技术实现思路
中所需要使用的附图作简要地介绍。图1为本专利技术的一种基于脉冲神经膜系统的快速并行图像细化算法对二值图像中每一个非边缘像素点,对其周围8个相邻像素点的排列顺序的定义,即按照时钟顺序分别为:P1、P2、P3、P4、P5、P6、P7、P8;图2为本专利技术的一种基于脉冲神经膜系统的快速并行图像细化算法的二值图像中的一个像素点及其8个相邻像素点。图3为本专利技术的一种基于脉冲神经膜系统的快速并行图像细化算法中构造的脉冲神经膜系统。具体实施方式为使本专利技术的目的、技术方案和优点更加清楚,下面将对本专利技术实施方式作进一步地详细描述。实施例一本实施例的基础在于,事先处理MNIST数据集,得到28×28像素的手写数字图像。因为该手写数字图像是二值图像,所以不需要对其做二值化处理。首先计算出满足细化算法删除条件的像素点的编码集合:DEL1、DEL2,用C语言编程实现基于脉冲神经膜系统的快速并行图像细化算法,即实现脉冲神经膜系统:П=(O,σ11,σ12,...,σpq,σ1,σ2,syn,1)。将待细化的手写数字图像输入到脉冲神经膜系统中,该系统会对图像中的每个像素点编码,并扫描整个图像的像素点,将属于删除集合的像素点删除。在该脉冲神经膜系统执行n次迭代删除操作之后,图像已经没有满足删除条件的像素点,即得到了细化后的图像。利用基于脉冲神经膜系统的快速并行图像细化算法得到的图像,具有和原始图像相同拓扑结构及相同细节信息。由于细化后的图像的信息量少,所以有利于图像预处理后对图像的特征提取操作,从而更有利于图像的识别。本文档来自技高网
...
一种基于脉冲神经膜系统的快速并行图像细化算法

【技术保护点】
一种基于脉冲神经膜系统的快速并行图像细化算法,包括以下部分:A、对二值图像中的每个像素点编码;B、根据快速并行细化算法中删除黑色像素点的条件,找出每一种符合删除条件点的编码,给出这些编码的集合,即删除集合DEL

【技术特征摘要】
1.一种基于脉冲神经膜系统的快速并行图像细化算法,包括以下部分:A、对二值图像中的每个像素点编码;B、根据快速并行细化算法中删除黑色像素点的条件,找出每一种符合删除条件点的编码,给出这些编码的集合,即删除集合DEL1、DEL2;C、建立图像细化脉冲神经膜系统。2.根据权利要求1所述的一种基于脉冲神经膜系统的快速并行细化算法,其特征在于,所述的部分A中,所述的像素点编码是指:对于除边缘像素点以外的每个像素点,将其设为P0,其周围相邻的八个像素点按照时钟顺序分别设为P1、P2、P3、P4、P5、P6、P7、P8,假设图像中第i行第j列的像素点标记为(i,j),当像素点为黑色像素时Hr=0,当像素点为白色像素时Hr=1,则对(i,j)像素点的编码为:3.根据权利要求1所述的一种基于脉冲神经膜系统的快速并行细化算法,其特征在于,所述的部分B中,所述的删除集合是指:令N(P0)表示P0的邻点为黑色像素点的个数,S(P0)表示以P1、P2、P3、P4、P5、P6、P7、P8、P1为序时这些点的值从0到1变化的次数,细化算法分为两个步骤,第一步,将所有满足以下四种条件的像素点列出,建立删除集合DEL1:2≦N(P0)≦6、S(P0)=1、P1×P3×P5=0、P3×P5×P7=0,第二步,将所有满足以下四种条件的像素点列出,建立删除集合DEL2:2≦N(P0)≦6、S(P0)=1、P1×P3×P7=0、P1×P5×P7=0。4.根据权利要求1所述的一种基于脉冲...

【专利技术属性】
技术研发人员:庞善臣郝少华徐建朋马同茂张伟光
申请(专利权)人:中国石油大学华东
类型:发明
国别省市:山东,37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1