一种考虑分时段的非线性光伏出力预测方法技术

技术编号:15502788 阅读:115 留言:0更新日期:2017-06-03 23:31
一种考虑分时段的非线性光伏出力预测方法,该方法由建立分段模型和非线性时间序列模型对太阳辐射强度预测,以及建立光伏发电功率模型两部分组成;首先由最大后验概率推导得分段模型,该分段模型以工程实际经验作为辐射强度先验信息,同时考虑辐射强度序列本身的分布特性对非平稳时间序列进行分段;分段后的每一段序列都是平稳序列,解决了非线性SIAVAR单指标可加向量自回归模型要求序列必须平稳的假设;然后,分别对每一段序列应用非线性SIAVAR模型进行模拟;非线性模拟对非线性模型中非参函数全局逼近,并用Backfitting回溯法进行半参数估计,完成辐射强度时间序列拟合;根据光伏发电出力与太阳辐射强度之间的关系,建立光伏出力模型,得到光伏出力预测时间序列。

A method of forecasting nonlinear PV output considering time interval

A nonlinear PV output forecasting method of time periods, the method established by piecewise model and nonlinear time series model to predict the strength of solar radiation, and the establishment of photovoltaic power model is composed of two parts; first by the maximum a posteriori probability is piecewise model, the segmentation model to practical experience as the radiation intensity of the prior information, at the same time considering the distribution characteristics of the radiation intensity sequence itself of non-stationary time series segmentation; every sequence segment is stationary, solve the nonlinear SIAVAR single index with vector autoregressive model for sequence must be stable then assumptions; each sequence using nonlinear SIAVAR model to simulate the nonlinear simulation; the nonlinear model of non parametric function global approximation, and semi parametric estimation using Backfitting backtracking, end Fitting the time series of radiation intensity; according to the relationship between the photovoltaic power output and the solar radiation intensity, the PV output model is established, and the time series of PV output prediction is obtained.

【技术实现步骤摘要】
一种考虑分时段的非线性光伏出力预测方法
本专利技术属于光伏发电
,尤其涉及一种考虑分时段的非线性光伏出力预测方法。
技术介绍
随着全球能源危机和环境保护问题的日益突出,并网光伏发电以其安全性、清洁型、长寿命以及潜在的经济性等优势,得到了快速推广应用。但是,光伏出力的波动性、间歇性以及随机性会威胁到电网的安全和稳定运行。提前对光伏输出功率进行预测,并提高预测精度,可以减少电网调度的偏差,减轻光伏发电功率变化的不确定性对电网造成的影响,电力系统的安全性和稳定性得到进一步提高。因此,光伏出力预测对电力系统规划、运行具有重要意义。近年来,很多学者对光伏出力预测方法进行了广泛研究。从预测方式上可分为直接预测和间接预测。前者直接对光伏电站的输出功率进行预测;后者首先对太阳辐射强度进行预测,然后根据光伏发电系统发电模型得到输出功率。直接预测模型需要从历史发电数据直接预测未来的发电功率,其准确性取决于预测算法和历史数据的准确性。而间接预测方式包括太阳辐射强度预测和光伏发电系统功率模型两个过程,每个过程中方法的选择具有灵活性,克服了直接预测方式的局限性。由于光伏电站的太阳辐射强度数据按一定周期连续测得,所以时间序列是对光伏出力的一种较为精准的刻画。通过预测太阳辐射强度时间序列,然后根据光伏发电功率模型转化为对光伏出力的预测。目前,这些用以描述时间序列的拟合方法主要包括AR模型、滑动平均(MA)模型、自回归滑动平均(ARMA)模型等,都假定当前值和过去值之间存在线性关系。然而现实中无论是太阳辐射强度还是光伏发电往往存在着非线性,使用线性时间序列预测只是对光伏出力在一定范围内的近似,无法进行更精确的模拟。非线性时间序列模型在一定程度上解决了太阳辐射强度预测的本质非线性问题,主要方法有人工神经网络法、支持向量机法和小波分析预测法等方法。但是至今为止,这些非线性方法都需要将天气、季节等影响因素作为输入,用历史数据对算法进行训练,计算复杂,数据量大。而且,时间序列模型的拟合都是建立在平稳序列的假设之上,即一个平稳序列的联合分布不随时间的变化而变化,这个假设对现实中的序列来说是很弱的。尽管有学者提出了考虑非平稳序列的模型,但是基于线性自回归模型。当前关于非线性非平稳时间序列的研究还比较少,并没有形成一套完整的通用模型体系。因此有必要提出一种能适用于非线性非平稳时间序列的光伏出力预测方法,对于精确预测光伏出力、在接入大量新能源的情况下维持电能稳定和高质量、减少光伏发电投资成本、建立电力市场等方面具有重要意义。
技术实现思路
本专利技术的目的在于提出一种考虑分时段的非线性光伏出力预测方法,该方法既可以改善对太阳辐射强度在一天内时间区段纯人工分段精确度不高的问题,也可以防止完全自动分段可能出现不符合实际的情况,具有较强的通用性和工程实用性。为了达到上述目的,本专利技术采用的如下技术方案:一种考虑分时段的非线性光伏出力预测方法,包括以下步骤:1)通过工程实践中一天内早中晚的太阳辐射强度的经验,获取太阳辐射强度时间序列的先验信息,包括分段点数量M(m=0,…,M)、预估分段点位置初值tm、分段点在该位置附近的摆动时间Δtm以及分段点在该位置的可能性大小ρm;2)对步骤1)获得的太阳辐射强度时间序列的先验信息进行先验概率转化,定义变量X={Xm;m=0,…,M}表示分段点位置,Y为太阳辐射强度时间序列,长度为n的太阳辐射强度时间序列表示为Yt={Yt,t=1,…,n},分得的第m段太阳辐射强度时间序列记为Ym={Yt;t=Xm-1+1,…,Xm};采用最大似然函数法(MLE)估计分布参数,整个太阳辐射强度时间序列的似然函数记作h(Y|X,ω)={h(Y|X;ω)}:f(ω)为分布参数ω的先验分布,π(X)为分段点位置X的先验分布概率;3)根据步骤2)中的公式推导,得到分段模型:其中,对数似然函数V(X,Y)=-lnh(Y|X;ω(X)),第m段太阳辐射强度时间序列的似然函数为Vm(X,Y),βi为第i时间的转换系数;根据步骤1)获得的太阳辐射强度时间序列的先验信息,求解上述分段模型,能够估计整个太阳辐射强度序列的分段点位置X;4)根据步骤3)得到分段点位置X,处于分段点间的每一段平稳序列分别符合非线性SIAVAR模型的假设条件,使用非线性SIAVAR模型进行模拟;将一个长度为n的时间太阳辐射强度时间序列表示为Yt={Yt,t=1,…,n},非线性SIAVAR模型如下:其中p为模型的阶数,aj是第j阶的系数,gj是每一阶的非线性函数;采用全局样条逼近方法对非线性非参函数进行估计;由于非线性SIAVAR模型不具有唯一性,对aj进行重新参数化;采用Backfitting回溯法进行半参数估计,得到aj和gj;将太阳辐射强度时间序列Y按照分段点分成M段,即完成每一段太阳辐射强度序列Ym的非线性SIAVAR模型的拟合;采用R语言编写对上述模型求解,时间序列的分段需要求解非凸混合整数非线性规划问题,使用通用代数建模系统GAMS中的优化求解器LocalSolver能得出稳定且有效的解;5)根据步骤4)拟合得到的每一段太阳辐射强度序列Ym,假设在光伏系统中使用了最大功率跟踪技术,根据光伏发电出力特性,单位面积光伏阵列输出功率为Pm=ηSYm其中,η是转换效率,S是阵列面积;即可得到光伏出力预测时间序列Pt。所述的步骤1)中,在某一种天气类型条件下,由于光伏电池板通常集中建设在一片区域内,单个光伏电站的地域跨度不大,因此认为一个光伏电站上空的太阳辐射强度和光伏出力特性近似相同,假设一个光伏电站内的所有光伏电池板的太阳辐射强度时间序列可认为具有相同的分段点。所述的步骤2)中,太阳辐射强度时间序列的先验信息与先验概率转化关系推导步骤为:2.1)一般认为对每段太阳辐射强度序列的分布参数ω没有任何先验信息,所以认为f(ω)满足均匀分布,即f(ω)为常数。同过对上式取负对数,进行变换得其中,对数似然函数V(X,Y)=-lnh(Y|X;ω(X))。2.2)先验分布其中,是在时间i处存在分段点的概率,是在时间i处不存在分段点的概率,对先验分布函数取对数化简常数项,定义时间i处转换系数得到βi与先验分布的负对数关系式。然后根据βi特性,得到βi与先验信息之间转换关系为:2.3)V(X,Y)的一般推导步骤如下:2.3.1)选定需要的太阳辐射强度分布函数并得到其似然函数,将其写成分段形式;2.3.2)对每一段太阳辐射强度序列对应的似然函数取负对数,然后把每段辐射强度序列对应的结果进行求和,得到原始的V(X,Y);2.3.3)将所选分布的最大似然参数估计方程代入步骤2.3.2)得到的V(X,Y)中,对其进行化简,得到最终的结果。所述步骤3)中,不失一般性情况下,可以为V(X,Y)选择不同的分布函数,根据步骤3)中的分段模型直接求解。所述步骤3)中,如果缺少先验信息中的预估分段点位置初值tm,模型退化为只靠太阳辐照强度序列的分布特性来分段:所述步骤3)中,如果连一段太阳辐射强度序列中有几个分段点都不知道,此时由于M不存在,预估分段点位置初值tm、分段点在该位置附近的摆动时间Δtm和分段点在该位置的可能性大小ρm全都无法给定,模型没有任何先验信息。处理步骤为:3.1)先给定分段点数量本文档来自技高网
...
一种考虑分时段的非线性光伏出力预测方法

【技术保护点】
一种考虑分时段的非线性光伏出力预测方法,其特征在于,包括以下步骤:1)通过工程实践中一天内早中晚的太阳辐射强度的经验,获取太阳辐射强度时间序列的先验信息,包括分段点数量M(m=0,…,M)、预估分段点位置初值t

【技术特征摘要】
1.一种考虑分时段的非线性光伏出力预测方法,其特征在于,包括以下步骤:1)通过工程实践中一天内早中晚的太阳辐射强度的经验,获取太阳辐射强度时间序列的先验信息,包括分段点数量M(m=0,…,M)、预估分段点位置初值tm、分段点在该位置附近的摆动时间Δtm以及分段点在该位置的可能性大小ρm;2)对步骤1)获得的太阳辐射强度时间序列的先验信息进行先验概率转化,定义变量X={Xm;m=0,…,M}表示分段点位置,Y为太阳辐射强度时间序列,长度为n的太阳辐射强度时间序列表示为Yt={Yt,t=1,…,n},分得的第m段太阳辐射强度时间序列记为Ym={Yt;t=Xm-1+1,…,Xm};采用最大似然函数法MLE估计分布参数,整个太阳辐射强度时间序列的似然函数记作h(Y|X,ω)={h(Y|X;ω)}:f(ω)为分布参数ω的先验分布,π(X)为分段点位置X的先验分布概率;3)根据步骤2)中的公式推导,得到分段模型:其中,对数似然函数V(X,Y)=-lnh(Y|X;ω(X)),第m段太阳辐射强度时间序列的似然函数为Vm(X,Y),βi为第i时间的转换系数;根据步骤1)获得的太阳辐射强度时间序列的先验信息,求解上述分段模型,能够估计整个太阳辐射强度序列的分段点位置X;4)根据步骤3)得到分段点位置X,处于分段点间的每一段平稳序列分别符合非线性SIAVAR模型的假设条件,使用非线性SIAVAR模型进行模拟;将一个长度为n的时间太阳辐射强度时间序列表示为Yt={Yt,t=1,…,n},非线性SIAVAR模型如下:

【专利技术属性】
技术研发人员:别朝红刘诗雨汪宁渤陈铉谢海鹏丁坤路亮李津周识远邵冲陟晶
申请(专利权)人:西安交通大学甘肃省电力公司风电技术中心国网甘肃省电力公司
类型:发明
国别省市:陕西,61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1