The invention relates to a method for on-line classification and tracking of rigid body targets based on Gauss mixture model. The method comprises the following steps: 1) select the region of interest in the initial image, and detect the SURF features in the target area; 2) to create a classifier for each SURF feature; 3) in the new image comes, matching the SURF feature classifier using the SURF feature of the initial image and the new image is detected. The formation of the matching points; in the process of matching the classifier, the online classification mechanism of Gauss mixture model identification based on positive and negative samples; 4) according to the matching points, the random sample consensus algorithm to calculate the motion parameters, and determine the target area from the current image, target tracking. The invention can cope with complicated scene changes in video, guarantee the adaptive ability of tracking, and realize stable, continuous and realistic target tracking.
【技术实现步骤摘要】
基于高斯混合模型的刚体目标在线特征分类与跟踪方法
本专利技术属于计算机视觉
,具体涉及一种基于高斯混合模型的在线特征分类与跟踪方法。
技术介绍
刚体目标表面任意一点的运动都可以代表整体的运动,使得利用目标区域内的特征来描述目标运动成为可能。已有的刚体目标跟踪方法致力于提取参考图像目标区域内具有不变性的某些特征,并对提取的特征进行量化和描述,如颜色特征、纹理特征、光流特征。局部特征是指在图像区域内检测到的局部具有不变性、可重现性和特异性的特征,能够在一定程度上抵抗遮挡、尺度、旋转等复杂变化,并提供对特征的定量描述。目前,相比其他特征,局部特征在不变性和特异性方面优势愈专利技术显,使其更加深入的应用在目标跟踪中。在当前帧到来时,首先对整个区域提取局部特征并描述。进而,通过局部特征的匹配找到同上一目标内局部特征的候选对应集。借助随机采样一致性算法(RANSAC),去除不正确的对应特征集,估计出运动变换参数,实现目标跟踪。图1给出了基于特征的跟踪方法框图,其主要思路在于将跟踪看成是局部特征匹配问题。目前,SURF(Speed-upRobustFeature,加速鲁棒特征)特征是应用较多且效果较为理想的局部特征之一,主要引入积分图像快速算法,并通过执行加减法运算近似得到高斯二阶微分的响应值。SURF算法主要包括特征检测和特征描述两方面。特征检测通过快速计算每个特征的尺度和主方向,并且圈定以检测点为中心的尺度旋转不变对称邻域;特征描述在该不变性邻域内进行Haar特征计算,并最终形成64维特征向量。不同图像之间的SURF特征匹配主要是通过比较特征向量之间的距离实现 ...
【技术保护点】
一种基于高斯混合模型的刚体目标在线特征分类与跟踪方法,其特征在于,包括以下步骤:1)在初始图像中选定感兴趣的目标区域,并在目标区域检测SURF特征;2)为每个SURF特征创建分类器,其中每个强分类器对应一个SURF特征,每个强分类器包括若干弱分类器;3)在新图像到来时,利用分类器对初始图像中的SURF特征与新图像检测到的SURF特征进行匹配,形成匹配点对;在分类器的匹配过程中,采用基于高斯混合模型的在线分类机制判别正样本和负样本;4)根据得到的匹配点对,采用随机采样一致性算法计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。
【技术特征摘要】
1.一种基于高斯混合模型的刚体目标在线特征分类与跟踪方法,其特征在于,包括以下步骤:1)在初始图像中选定感兴趣的目标区域,并在目标区域检测SURF特征;2)为每个SURF特征创建分类器,其中每个强分类器对应一个SURF特征,每个强分类器包括若干弱分类器;3)在新图像到来时,利用分类器对初始图像中的SURF特征与新图像检测到的SURF特征进行匹配,形成匹配点对;在分类器的匹配过程中,采用基于高斯混合模型的在线分类机制判别正样本和负样本;4)根据得到的匹配点对,采用随机采样一致性算法计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。2.如权利要求1所述的方法,其特征在于,还包括在线更新步骤:在对目标区域完成定位后,对建立对应关系的特征点对进行验证,对每个分类器进行在线更新。3.如权利要求1或2所述的方法,其特征在于:步骤1)检测SURF特征时,利用积分图像计算Hessian矩阵行列式,再通过选取极值来定位SURF特征点,并通过调整方格滤波器的尺寸来建立尺度空间;SURF特征的旋转不变性通过求取主方向实现。4.如权利要求1或2所述的方法,其特征在于:步骤2)中,每个弱分类器对应SURF特征邻域内的一个Haar特征,Haar特征经过尺度和主方向的归一化,由弱分类器构成的强分类器同时具备尺度和旋转的不变性。5.如权利要求1或2所述的方法,其特征在于:步骤3)进行特征匹配时,用分类器在每一个新的SURF检测点的匹配分数来比较,匹配分数的值越大,表示当前检测点作为对应点的可能性越大。6.如权利要求1或2所述的方法,其特征在于:步...
【专利技术属性】
技术研发人员:苗权,王贵锦,李晗,吴昊,李锐光,程光,
申请(专利权)人:国家计算机网络与信息安全管理中心,
类型:发明
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。