一种基于GPU的边缘检测图像二值化方法技术

技术编号:15502195 阅读:148 留言:0更新日期:2017-06-03 23:12
本发明专利技术涉及一种基于GPU的边缘检测图像二值化方法,包括以下步骤:通过GPU服务器把采集到的灰度图输入到GPU中;GPU的每个核负责处理原始图片中的每行数据,进行像素灰度值的跳变检测,按照设定的阈值T,求得每行数据的突变点,然后进行黑白处理;按照步骤2)同样的方法求得每列数据的突变点,然后进行黑白处理;把处理后的行、列数据进行汇总处理,得到最终的二值化图。本发明专利技术采用边缘检测的方法进行二值化,GPU的每个核处理负责处理原始图片的每行及每列数据,进行像素灰度值得跳变检测,把变化方向分为正负两个方向,然后进行汇总,保证图案边缘信息不丢失,同时也保证处理的实时性。

A two valued method of edge detection image based on GPU

The present invention relates to a GPU edge detection method based on image binarization, which comprises the following steps: through the GPU server to the grayscale collected input to GPU; each row of data for each nucleus GPU is responsible for processing the original picture of the pixel gray value change detection, according to the threshold set by T, mutation each row of data points obtained, then black and white; in step 2) also obtained the mutation point data in each column, then the black and white; after the treatment of the rows and columns of data processed, get the final binarization map. The invention adopts the edge detection method for binarization processing, each GPU nuclear responsible for processing the original image in each row and each column of data, pixel worth change detection, the change of positive and negative direction is divided into two directions, and then summarize, ensure the pattern edge information is not lost, but also to ensure real-time processing the.

【技术实现步骤摘要】
一种基于GPU的边缘检测图像二值化方法
本专利技术涉及半导体检测
,尤其是一种基于GPU的边缘检测图像二值化方法,用以检测掩膜版和晶圆缺陷。
技术介绍
半导体掩膜版和晶圆的检测一般常见还是光学图形检测,不管是Die2DB还是Die2Die的方式,都涉及图形学;其中针对Die2DB来说,首先要对采集的图进行二值化处理,二值化处理常见有全局二值化和局部二值化,针对全局阈值法来说,实现是简单,高效,但是他的适用范围相对有限,针对半导体的掩膜版、晶圆、薄膜电路等,由于光源或镜头等多方面的原因,会导致光照的不均匀,如果按照全局阈值方法来二值化,会导致图片的边缘信息丢失很多;如果按照局部阈值来处理,需要分割若干个区域进行处理,但是如何进行区域的划分,也是比较复杂的问题,往往需要通过大量的试验来确定,即便这样,效果也不是最理想的,所以相比而言,这两种方法都不是最佳的方法;针对半导体的mask,wafer的光学检测来说,在光照相对不均匀的情况,如果提供一种有效的二值化方法,是本领域技术人员迫切需要解决的核心技术问题之一。
技术实现思路
本专利技术要解决的技术问题是:提出一种基于GPU的边缘检测图像二值化方法,具有完整性高,实时性好的特点。本专利技术所采用的技术方案为:一种基于GPU的边缘检测图像二值化方法,包括以下步骤:1)通过GPU服务器把采集到的灰度图输入到GPU中;2)GPU的每个核负责处理原始图片中的每行数据,进行像素灰度值的跳变检测,按照设定的阈值T,求得每行数据的突变点,然后进行黑白处理;3)按照步骤2)同样的方法,GPU的每个核处理原始图片的每列数;同样进行像素灰度值的跳变检测,按照设定的阈值T,求得每列数据的突变点,然后进行黑白处理;4)把GPU处理后的行、列数据进行汇总处理,得到的数据便是最终的二值化图。本专利技术的有益效果是:本专利技术是以GPU为计算主体,采用边缘检测的方法进行二值化,GPU的每个核处理负责处理原始图片的每行以及每列数据,进行像素灰度值得跳变检测,把变化方向分为正负两个方向,正方向表示由暗到亮,负方向表示由亮到暗,然后进行汇总,这样能得到理想的二值化图,保证图案边缘信息不丢失等特点,由于采用GPU处理,也能保证处理的实时性。附图说明下面结合附图和实施例对本专利技术进一步说明。图1是本专利技术的原始灰度图;图2是本专利技术边缘检测原理图;图3是本专利技术边缘检测二值化实际图。具体实施方式现在结合附图和优选实施例对本专利技术作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本专利技术的基本结构,因此其仅显示与本专利技术有关的构成。一种基于GPU的边缘检测图像二值化方法,包括以下步骤:步骤1,通过GPU服务器把采集到的一批灰度图输入到GPU的显存中,由于GPU核心数较多,可以每次输入多张图像到GPU中进行处理,便于高效运算;步骤2,根据当前光照环境,设定一个像素灰度值跳变阈值T,该值决定像素灰度值值是否发生了跳变;当然发生跳变,并不表示一定是黑白分界点,最终要求得同方向的最大值,所以该阈值的设定不一定要求非常准确,这样该方法就有实际运用的价值了;步骤3,获取原始采集灰度图像数据和阈值T后,GPU就开始检测原始数据的行数据M,给每个GPU的核分配数据,每个核对应一行数据,例如图2所示,每个核从左到右分析像素的灰度值(0到255闭区间),如果|Mi+1-Mi|>T,则纳入统计列表中L(Mpi,...,MPi+n),直至跳变方向发生反转,例如由正到负时,根据统计列表的数据,找出最大值Mmax=max(Mpi,...,Mpi+n);此时可认为最大值的X坐标为跳变点,根据跳变方向,判断之前起始位置填充黑还是白,如果是正方向,则之前的行数据均为0,反之则为255;然后继续往右方分析,直至当前行数据处理完毕,当负责该图的所有核处理完成后,即可得到整个图的矩阵TRm;步骤4,按照步骤2同样的方法,来检测原始图的列N数据,找出最大值Nmax=max(Npi,...,Npi+n),此时可认为最大值的Y坐标为跳变点,根据跳变方向,判断之前起始位置填充黑还是白,如果是正方向,则之前的列数据均为0,反之则为255;然后继续往下方分析,直至当前行数据处理完毕,当负责该图的所有核处理完成后,即可得到矩阵TRn;步骤5,根据行列两个方向二值化的矩阵数据TRm和TRn进行汇总操,如果矩阵TRm(i,j)与TRn(i,j)中的像素值若有一个是0,则合并为0,反之为255;因为这些都是矩阵数据,非常适合GPU来并行计算,所以GPU的每个核一次只负责处理每一行或者列像素数据,故性能极其高效,最终得到一个完整的理想二值化图像数据,如图3所示。以上说明书中描述的只是本专利技术的具体实施方式,各种举例说明不对本专利技术的实质内容构成限制,所属
的普通技术人员在阅读了说明书后可以对以前所述的具体实施方式做修改或变形,而不背离本专利技术的实质和范围。本文档来自技高网
...
一种基于GPU的边缘检测图像二值化方法

【技术保护点】
一种基于GPU的边缘检测图像二值化方法,其特征在于包括以下步骤:1)通过GPU服务器把采集到的灰度图输入到GPU中;2)GPU的每个核负责处理原始图片中的每行数据,进行像素灰度值的跳变检测,按照设定的阈值T,求得每行数据的突变点,然后进行黑白处理;3)按照步骤2)同样的方法,GPU的每个核处理原始图片的每列数;同样进行像素灰度值的跳变检测,按照设定的阈值T,求得每列数据的突变点,然后进行黑白处理;4)把GPU处理后的行、列数据进行汇总处理,得到的数据便是最终的二值化图。

【技术特征摘要】
1.一种基于GPU的边缘检测图像二值化方法,其特征在于包括以下步骤:1)通过GPU服务器把采集到的灰度图输入到GPU中;2)GPU的每个核负责处理原始图片中的每行数据,进行像素灰度值的跳变检测,按照设定的阈值T,求得每行数据的突变点,然后进行黑白处理;3)按照步骤2)同样的方法,GPU的每个核处理原始图片的每列数;同样进行像素灰度值的跳变检测,按照设定的阈值T,求得每列数据的突变点,然后进行黑白处理;4)把GPU处理后的行、列数据进行汇总处理,得到的数据便是最终的二值化图。2.如权利要求1所述的一种基于GPU的边缘检测图像二值化方法,其特征在于:所述的步骤2)和步骤3)中,设定的阈值均为像素灰度值跳变阈值。3.如权利要求1所述的一种基于GPU的边缘检测图像二值化方法,其特征在于:所述的步骤2)中,GPU检测原始数据的行数据M,给每个GPU的核分配数据,...

【专利技术属性】
技术研发人员:刘建明何津张琨刘庄张彦鹏蒋平蒋开
申请(专利权)人:江苏维普光电科技有限公司
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1