一种高韧性纳米Gd2Zr2O7陶瓷的制备方法技术

技术编号:15497553 阅读:206 留言:0更新日期:2017-06-03 18:28
本发明专利技术公开了一种高韧性纳米Gd2Zr2O7陶瓷的制备方法,将充分干燥的改性Gd2Zr2O7纳米粉末放置于模具中,进行加压定型;之后将其在氢气环境中,在放点等离子体烧结炉中进行高压烧结,烧结完成后降温,之后放出压力后,开炉门取出模具,脱模既得所需高韧性纳米Gd2Zr2O7陶瓷。该方法操作简单,工艺流程短,制备的Gd2Zr2O7陶瓷结构致密性高,结晶度高,韧性好,不易裂,具有较高的商业价值。

A high toughness nano Gd

The invention discloses a high tenacity nanometer Gd

【技术实现步骤摘要】
一种高韧性纳米Gd2Zr2O7陶瓷的制备方法
本专利技术涉及陶瓷材料领域,特别是涉及一种高韧性纳米Gd2Zr2O7陶瓷的制备方法。
技术介绍
陶瓷材料具有耐高温、耐磨损以及耐腐蚀等优点,但是陶瓷材料的脆性是其最大缺点,导致其加工成型困难,从而它的发展和应用推广受到了限制。从微观结构分析,陶瓷的脆性主要是因为存在裂纹,并且集中度较高。陶瓷材料缺少独立的滑移系难以通过塑性变形来松弛应力,因此陶瓷材料可以通过控制裂纹的扩展情况来改善其韧性。锆酸钆陶瓷是一种性能优异的陶瓷材料,综合性能好,耐高温,被广泛应用于催化剂、高放废物固化、高温热障涂层材料以及固体电解质等方面。锆酸钆陶瓷材料的合成方式较为复杂,目前较为常用的方法为以氧化钆和氧化锆粉体为原料,采用高温固相反应法、湿化学方法以及机械球磨法来制备合成。这些传统的合成方法需要耗费大量的时间和能量,并且操作工艺复杂,效率较低。传统的高温烧结方法会出现保温时间长、周期长等问题,并且烧结出来的锆酸钆晶体结构不理想,常温下力学性能不高,从而影响锆酸钆材料的品质,使用受到限制。因此,研发新的锆酸钆陶瓷材料的制备方式,使得锆酸钆陶瓷材料品质提高,性能稳定是亟待解决的问题。中国专利CN201510827447.0公开了一种含烧绿石相锆酸钆粉体的陶瓷,该陶瓷由以下重量百分数的原料制备而成:锆酸钆的重量百分数为10%~100%;氧化钆和氧化锆中至少一种,其重量百分数为0%~90%;烧结助剂重量百分数为0%~5%。该陶瓷材料采用高压条件下烧结。该专利技术提供的含烧绿石相锆酸钆粉体的陶瓷材料具有热稳定性高、烧结致密性好、显微结构均匀等性能。
技术实现思路
本专利技术的目的是提供一种高韧性纳米Gd2Zr2O7陶瓷的制备方法,该方法操作简单,工艺流程短,制备的Gd2Zr2O7陶瓷结构致密性高,结晶度高,韧性好,不易裂,具有较高的商业价值。为实现上述目的,本专利技术采用以下技术方案:一种高韧性纳米Gd2Zr2O7陶瓷的制备方法,包括以下步骤:将充分干燥的改性Gd2Zr2O7纳米粉末放置于已经垫好碳纸的模具中,使改性Gd2Zr2O7纳米粉末与模具不会直接接触,然后进行加压定型;之后将装有改性Gd2Zr2O7纳米粉末的模具固定在放点等离子体烧结炉中,向其中通入氢气,使炉内处于氢气环境下,关闭炉门,然后加压至40-50Mpa,开始烧结;烧结完成后降温,之后放出压力后,开炉门取出模具,脱模既得所需高韧性纳米Gd2Zr2O7陶瓷。优选的,所述改性Gd2Zr2O7纳米粉末的制备方法为:将ZrOCl2·8H2O和Gd2O3溶解于浓度为40%的稀硝酸溶液中,制备成混合液,用蠕动泵将混合液滴加到氨水溶液中,同时以400-600转/min的速度搅拌,滴加完成后,继续搅拌30min,使用稀盐酸调节上清液pH为10-11,之后在20-30℃条件下静置36-48h,之后,将沉淀物进行多次离心清洗,再使用无水乙醇清洗4-5遍,然后将沉淀物与无水乙醇混合后置于210-240℃密封环境中静置12-20h,再使用无水乙醇再次清洗后烘干,干燥后将其在高温下煅烧,冷却后研磨成粉末即得改性Gd2Zr2O7纳米粉末。优选的,制备的ZrOCl2·8H2O、Gd2O3的稀硝酸混合溶液中,Zr的浓度为50mmol/L,Gd的浓度为55mmol/L。优选的,所述氨水溶液的浓度为0.8-1.0mol/L。优选的,所述进行高温煅烧的温度为730-880℃。优选的,所述加压定型的压力为3-4Mpa。优选的,所述烧结过程中,在600℃以下,升温速率为20℃/min,超过600℃后升温速率为65℃/min,升至1400℃后,保持温度10min,之后按照30℃/min的速率降低温度至常温。其中所使用的模具为石墨材质模具;在制备改性Gd2Zr2O7纳米粉末过程中,是用清水离心清洗时应该保证上清液遇硝酸银不会发生沉淀。本专利技术具有以下有益效果,采用改性的Gd2Zr2O7纳米粉末制备陶瓷,解决了纳米粉末烧结陶瓷活性不高的问题。同时在烧结过程中,严格控制升温速度,从而减少烧结过程中陶瓷开裂的问题。使用放电等离子体烧结炉进行烧结,效率高,节约能源。由于Gd2Zr2O7纳米粉末在氢气环境下烧结,可以利用氢气使陶瓷致密性更好,同时利用改性的纳米粉末烧结出的陶瓷韧性好,不易开裂。具体实施方式为了更好的理解本专利技术,下面通过实施例对本专利技术进一步说明,实施例只用于解释本专利技术,不会对本专利技术构成任何的限定。实施例1将ZrOCl2·8H2O和Gd2O3溶解于浓度为40%的稀硝酸溶液中,制备成混合液,其中Zr的浓度为50mmol/L,Gd的浓度为55mmol/L,用蠕动泵将混合液滴加到0.8mol/L的氨水溶液中,同时以500转/min的速度搅拌,滴加完成后,继续搅拌30min,使用稀盐酸调节上清液pH为10,之后在20-30℃条件下静置36h,之后,将沉淀物进行多次离心清洗,再使用无水乙醇清洗5遍,然后将沉淀物与无水乙醇混合后置于210℃密封环境中静置18h,再使用无水乙醇再次清洗后烘干,干燥后将其在880℃高温下煅烧,冷却后研磨成粉末即得改性Gd2Zr2O7纳米粉末。实施例2将ZrOCl2·8H2O和Gd2O3溶解于浓度为40%的稀硝酸溶液中,制备成混合液,其中Zr的浓度为50mmol/L,Gd的浓度为55mmol/L,用蠕动泵将混合液滴加到1.0mol/L的氨水溶液中,同时以600转/min的速度搅拌,滴加完成后,继续搅拌30min,使用稀盐酸调节上清液pH为10,之后在20-30℃条件下静置40h,之后,将沉淀物进行多次离心清洗,再使用无水乙醇清洗4遍,然后将沉淀物与无水乙醇混合后置于240℃密封环境中静置12h,再使用无水乙醇再次清洗后烘干,干燥后将其在730℃高温下煅烧,冷却后研磨成粉末即得改性Gd2Zr2O7纳米粉末。实施例3将实施例1中制备的改性Gd2Zr2O7纳米粉末充分干燥后,放置于已经垫好碳纸的模具中,使改性Gd2Zr2O7纳米粉末与模具不会直接接触,然后进行加压定型,压力为3Mpa;之后将装有改性Gd2Zr2O7纳米粉末的模具固定在放点等离子体烧结炉中,向其中通入氢气,使炉内处于氢气环境下,关闭炉门,然后加压至40Mpa,开始烧结;烧结完成后降温,之后放出压力后,开炉门取出模具,脱模既得所需高韧性纳米Gd2Zr2O7陶瓷。烧结过程中,在600℃以下,升温速率为20℃/min,超过600℃后升温速率为65℃/min,升至1400℃后,保持温度10min,之后按照30℃/min的速率降低温度至常温。实施例4将实施例2中制备的改性Gd2Zr2O7纳米粉末充分干燥后,放置于已经垫好碳纸的模具中,使改性Gd2Zr2O7纳米粉末与模具不会直接接触,然后进行加压定型,压力为4Mpa;之后将装有改性Gd2Zr2O7纳米粉末的模具固定在放点等离子体烧结炉中,向其中通入氢气,使炉内处于氢气环境下,关闭炉门,然后加压至50Mpa,开始烧结;烧结完成后降温,之后放出压力后,开炉门取出模具,脱模既得所需高韧性纳米Gd2Zr2O7陶瓷。烧结过程中,在600℃以下,升温速率为20℃/min,超过600℃后升温速率为65℃/min,升至1400℃后,保持温度10min,之后按照30℃/min的本文档来自技高网
...

【技术保护点】
一种高韧性纳米Gd

【技术特征摘要】
1.一种高韧性纳米Gd2Zr2O7陶瓷的制备方法,其特征在于,包括以下步骤:将充分干燥的改性Gd2Zr2O7纳米粉末放置于已经垫好碳纸的模具中,使改性Gd2Zr2O7纳米粉末与模具不会直接接触,然后进行加压定型;之后将装有改性Gd2Zr2O7纳米粉末的模具固定在放点等离子体烧结炉中,向其中通入氢气,使炉内处于氢气环境下,关闭炉门,然后加压至40-50Mpa,开始烧结;烧结完成后降温,之后放出压力后,开炉门取出模具,脱模既得所需高韧性纳米Gd2Zr2O7陶瓷。2.根据权利要求1所述的高韧性纳米Gd2Zr2O7陶瓷的制备方法,其特征在于,所述改性Gd2Zr2O7纳米粉末的制备方法为:将ZrOCl2·8H2O和Gd2O3溶解于浓度为40%的稀硝酸溶液中,制备成混合液,用蠕动泵将混合液滴加到氨水溶液中,同时以400-600转/min的速度搅拌,滴加完成后,继续搅拌30min,使用稀盐酸调节上清液pH为10-11,之后在20-30℃条件下静置36-48h,之后,将沉淀物进行多次离心清洗,再使用无水乙醇清洗4-5遍,然后将沉淀物与无水乙醇混合后置于210-240℃密封环境中静置12-20h,再使用无水乙醇再次清洗后烘...

【专利技术属性】
技术研发人员:李风浪李舒歆
申请(专利权)人:东莞市联洲知识产权运营管理有限公司
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1