当前位置: 首页 > 专利查询>厦门大学专利>正文

一种具有多流路互联结构的微通道换热器及其制造方法技术

技术编号:15432592 阅读:246 留言:0更新日期:2017-05-25 17:02
本发明专利技术提供了一种具有多流路互联结构的微通道换热器及其制造方法,包括一金属微通道基体,该基体沿冷却液流动方向上设置有若干个平行排布、阵列分布的开口圆环结构,其包括外部沿圆周向均匀间隔布置的四段第一弧形翅片和内部对称布置的两段第二弧形翅片,从而形成了嵌套设置的大开口圆环和小开口圆环。大开口圆环在沿平行、垂直于冷却液流动方向上分别形成前后、上下各两个狭缝,小开口圆环在沿平行于冷却液流动方向上形成前后两个狭缝,上述狭缝形成多流路互联通道。制造时,采用激光铣削技术来加工出该多流路互联微通道结构,将上盖板采用耐热玻璃封装,获得微通道换热器。本发明专利技术制造工艺简单、成本低廉,通过破坏边界层强化微通道换热。

Microchannel heat exchanger with multi flow interconnected structure and manufacturing method thereof

The invention provides a micro channel with multiple flow path interconnection structure of heat exchanger and a manufacturing method thereof, comprising a metal micro channel matrix, the matrix along the coolant flow direction is provided with a plurality of parallel array arrangement, distribution of open ring structure, the two section of the second arc fin which comprises an outer spaced evenly along the circumference the layout of the four segment of the first curved fins and the internal symmetry, thus forming a set of nested large open ring and small opening ring. Ring in parallel, perpendicular to the flow direction of the cooling liquid respectively before and after the formation of upper and lower two slit openings, small opening ring in parallel to the flow direction of the cooling liquid formed before and after the two slit, the slit is formed multi flow channel interconnection. In the manufacturing process, the laser milling technology is used to process the multi channel interconnected microchannel structure, and the upper cover plate is packed with heat-resistant glass to obtain a microchannel heat exchanger. The invention has the advantages of simple manufacturing process and low cost, and strengthens microchannel heat transfer by destroying the boundary layer.

【技术实现步骤摘要】
一种具有多流路互联结构的微通道换热器及其制造方法
本专利技术涉及一种微通道换热器及其制造方法,特别是涉及一种具有多流路互联微通道换热器及其制造方法。
技术介绍
随着微电子工业的迅猛发展,各种相关产品向着速度高度集成化和微型化的方向发展,在高密度的集成电路工作过程中,产生的热量若没有及时带走,温度的升高势必会影响正常。为保证微电子产品稳定可靠工作,要求换热器具有体积小、重量轻、适合于紧凑型封装、散热性能高等特点,微通道换热器应运而生。传统的微通道换热器主要是采用金属或硅作为基底,与盖板耦合封装成冷却液微流道,与外界连接而形成冷却液回路;通过微通道内流动的冷却液带走电子元器件产生的热量,从而实现电子元器件散热的目的。目前的微通道换热器结构主要是平行排布的矩形、三角形、梯形等微通道结构。这些传统形式的平行微通道,在流体进入平行微通道后,同时进行流动边界层和热边界层的发展。当热边界层还未达到充分发展区域,传热系数都比较大,传热性能比较好,但是随着流动的展开,传热系数迅速下降,从而导致明显的传热性能降低,强化换热效果十分有限。此外,这些传统形式的平行微通道结构由于流道横截面积沿流向一致,在两相沸腾形成气泡时,会导致通道中间的压力大,驱动气泡往流向上游流动,产生返流现象,从而导致严重的沸腾非稳定性问题,严重危害了微通道换热器的稳定运行。
技术实现思路
本专利技术的主要目的在于克服现有微通道换热器的上述不足,提供一种具有多流路互联结构的微通道换热器,显著强化传热。本专利技术还提供一种工艺简单、设备要求低、成本低廉的具有多流路互联微通道换热器的制造方法。为了解决上述的技术问题,本专利技术提供了一种具有多流路互联结构的微通道换热器,包括一金属微通道基体,所述基体在沿着冷却液流动方向上设置若干个平行排布、阵列分布的开口圆环结构;所述开口圆环结构在平行、垂直于冷却液流动方向上均对呈现称分布;每一个开口圆环结构包括均匀沿着圆周向间隔布置的四段第一弧形翅片,以及设置在四段第一弧形翅片内部沿着圆周向间隔对称布置的两段第二弧形翅片;从而形成了嵌套设置的大开口圆环和小开口圆环;所述小开口圆环在沿平行于冷却液流动方向上形成前后两个狭缝;所述大开口圆环在沿平行、垂直于冷却液流动方向上分别形成前后、上下各两个狭缝;所述的外部四段第一弧形翅片前后狭缝的宽度大于上下狭缝的宽度,使得冷却液优先汇聚于第一弧形翅片的前后狭缝,经过第二弧形翅片的前后狭缝形成纵向流路通道,;少部分冷却液沿第一弧形翅片的上下狭缝流出,与相邻开口圆环结构的上下狭缝相互连通,从而在所述基体上形成多流路互联通道;所述多流路互联通道在基体的表面上进行阵列排布,从而形成微通道结构。在一较佳实施例中:所述大开口圆环和小开口圆环之间存在宽度为0.2-0.5mm的弧形狭缝。在一较佳实施例中:所述第二弧形翅片的厚度为0.2-1mm;所述第一弧形翅片的厚度为0.2-1mm;在一较佳实施例中:所述四段第一弧形翅片形成的前后狭缝宽度为0.5-0.8mm,上下狭缝宽度为0.2-0.4mm。在一较佳实施例中:所述每一个开口圆环结构沿着冷却液流动方向分为对称设置的上半部和下半部,上一列开口圆环结构中的上半部与下一列开口圆环结构中的下半部位于平齐排布。在一较佳实施例中:所述每一个开口圆环结构沿着冷却液流动方向分为对称设置的上半部和下半部,上一列开口圆环结构中的上半部与下一列开口圆环结构中的上半部位于平齐排布。本专利技术还提供了一种具有多流路互联结构的微通道换热器制造方法,包含以下步骤:1)筛选出一块金属基体,对其表面进行去毛刺处理;2)将金属基体用夹具固定到激光铣削工作台上,利用杠杆百分表对基体待加工的表面进行校平;根据所述微通道结构的形状及尺寸在软件中绘制激光加工路径并设置激光加工的输出参数;3)取下工件,对加工后的金属基体进行清洗,得到多流路微通道结构;4)将得到的多流路微通道结构用耐热玻璃封装,并与外部的接管及水泵连接成一个整体,完成工质循环回路,得到完整的微通道换热器。在一较佳实施例中:所述金属基体为铜基板或铝基板或不锈钢基板或碳化硅基板。与现有的技术相比,本专利技术的技术方案相具有以下优点:1.本专利技术公开的具有多流路互联结构的微通道换热器,开口圆环结构增加了与流体的接触面积,增大了传热面积,实现强化换热。此外,冷却液纵向流动至开口圆环结构时,由一个流路分为三个流路,且在横向相互连通相通,从而改变了冷却液的正常流动,打破流动边界层,使得冷却液在微通道中一直处于热发展阶段,进一步强化了换热效果;2.本专利技术公开的具有多流路互联结构的微通道换热器,在两相沸腾时,多流路互联结构有效地增加了气泡的流动路径,减小了气泡产生的压力,从而抑制返流现象,有效解决沸腾非稳定性问题。3.本专利技术公开的具有多流路互联结构的微通道换热器,采用激光铣削加工的制造方法在金属基底上加工而成,无需复杂的制造工艺与设备,生产成本低廉、工艺简单,容易实现工业化生产。附图说明图1为本专利技术优选实施例1中具有多流路互联结构的微通道的结构示意图;图2是图1中开口圆环结构的示意图;图3为图1中冷却液流动的工作原理示意图;图4为本专利技术优选实施例1中激光铣削加工多流路互联微通道的示意图;图5为本专利技术优选实施例1中激光加工后所得多流路互联微通道SEM图;图6为本专利技术优选实施例1中封装后的微通道换热器示意图;图7为本专利技术优选实施例2中具有多流路互联结构的微通道的结构示意图。具体实施方式下文结合附图和具体实施方式对本专利技术做进一步说明。实施例1:一种具有多流路互联结构的微通道换热器,包括一金属微通道基体1,如图1所示,其特征在于:其在沿冷却液流动方向上包括若干平行排布、阵列分布的开口圆环结构2;所述开口圆环结构如图2所示,其在平行、垂直于冷却液流动方向上均对称分布;每一个开口圆环结构2包括均匀沿着圆周向间隔布置的四段第一弧形翅片21,以及设置在四段第一弧形翅片21内部沿着圆周向间隔对称布置的两段第二弧形翅片22;从而形成了嵌套设置的大开口圆环和小开口圆环;所述外部四段弧形翅片21在沿平行、垂直于冷却液流动方向上分别形成前后两个狭缝25、26和上下两个狭缝27、28。所述的外部四段第一弧形翅片21所形成的前后狭缝25、26的宽度大于其上下狭缝27、28的宽度。本实施例中,前后狭缝25、26宽度为0.5-0.8mm,上下狭缝27、28宽度为0.2-0.4mm。使得冷却液优先汇聚于外部四段弧形翅片21的前后狭缝25和26,经过内部对称布置的两段第二弧形翅片22的前后狭缝23和24形成多流路通道;少部分冷却液沿第一弧形翅片的上下狭缝27和28流出,与相邻开口圆环结构的上下狭缝27和28相互连通,从而在所述基体1上形成多流路互联通道;所述多流路互联通道在基体1的表面上进行阵列排布,从而形成图1所示的微通道结构。本实施例中,所述开口圆环结构2中大开口圆环和小开口圆环之间存在宽度为0.2-0.5mm的弧形狭缝29。所述第二弧形翅片22的厚度为0.2-1mm;所述第一弧形翅片21的厚度为0.2-1mm;本实施例中,开口圆环结构2的排列方式为:每一个开口圆环结构2沿着冷却液流动方向分为对称设置的上半部和下半部,上一列开口圆环结构2中的上半部与下一列开口圆环结构2中的下半部平齐排布。从而本文档来自技高网...
一种具有多流路互联结构的微通道换热器及其制造方法

【技术保护点】
一种具有多流路互联结构的微通道换热器,包括一金属微通道基体,其特征在于:所述基体在沿着冷却液流动方向上设置若干个平行排布、阵列分布的开口圆环结构;所述开口圆环结构在平行、垂直于冷却液流动方向上均呈现对称分布;每一个开口圆环结构包括沿着圆周向均匀间隔布置的四段第一弧形翅片,以及设置在四段第一弧形翅片内部沿着圆周向间隔对称布置的两段第二弧形翅片;从而形成了嵌套设置的大开口圆环和小开口圆环;所述小开口圆环在沿平行于冷却液流动方向上形成前后两个狭缝;所述大开口圆环在沿平行、垂直于冷却液流动方向上分别形成前后、上下各两个狭缝;所述的外部四段第一弧形翅片前后狭缝的宽度大于上下狭缝的宽度,使得冷却液优先汇聚于第一弧形翅片的前后狭缝,经过第二弧形翅片的前后狭缝形成纵向流路通道;少部分冷却液沿第一弧形翅片的上下狭缝流出,与相邻开口圆环结构的上下狭缝相互连通,从而在所述基体上形成多流路互联通道;所述多流路互联通道在基体的表面上进行阵列排布,从而形成微通道结构。

【技术特征摘要】
1.一种具有多流路互联结构的微通道换热器,包括一金属微通道基体,其特征在于:所述基体在沿着冷却液流动方向上设置若干个平行排布、阵列分布的开口圆环结构;所述开口圆环结构在平行、垂直于冷却液流动方向上均呈现对称分布;每一个开口圆环结构包括沿着圆周向均匀间隔布置的四段第一弧形翅片,以及设置在四段第一弧形翅片内部沿着圆周向间隔对称布置的两段第二弧形翅片;从而形成了嵌套设置的大开口圆环和小开口圆环;所述小开口圆环在沿平行于冷却液流动方向上形成前后两个狭缝;所述大开口圆环在沿平行、垂直于冷却液流动方向上分别形成前后、上下各两个狭缝;所述的外部四段第一弧形翅片前后狭缝的宽度大于上下狭缝的宽度,使得冷却液优先汇聚于第一弧形翅片的前后狭缝,经过第二弧形翅片的前后狭缝形成纵向流路通道;少部分冷却液沿第一弧形翅片的上下狭缝流出,与相邻开口圆环结构的上下狭缝相互连通,从而在所述基体上形成多流路互联通道;所述多流路互联通道在基体的表面上进行阵列排布,从而形成微通道结构。2.根据权利要求1所述的一种具有多流路互联结构的微通道换热器,其特征在于:所述大开口圆环和小开口圆环之间存在宽度为0.2-0...

【专利技术属性】
技术研发人员:邓大祥陈小龙万伟谢炎林黄青松
申请(专利权)人:厦门大学厦门大学深圳研究院
类型:发明
国别省市:福建,35

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1