The invention discloses a Fast RVM sewage treatment online fault diagnosis method, which comprises the following steps: 1) removed data attributes in incomplete sewage samples, which was normalized to [0,1] range, determine the historical data set and update the test set; 2) using the fast clustering based on relevance vector machine method to compress the most the data of the historical data set; 3) according to the sampling method of virtual minority class extension of minority class data historical data set; 4) the establishment of \a pair of fast relevance vector machine a\ multi classification training model; 5) from the update test set to add new samples to the model test, and update the historical data set; 6) go back to step 2), re processing of historical data, unbalanced training model, repeating the process, until the completion of the online testing data. The invention effectively reduces the imbalance of the sewage data, improves the classification accuracy rate, speeds up the online updating speed, diagnoses the running fault in real time, and ensures the safe operation of the sewage treatment plant.
【技术实现步骤摘要】
一种FastRVM污水处理在线故障诊断方法
本专利技术涉及污水处理领域,特别涉及一种FastRVM污水处理在线故障诊断方法。
技术介绍
目前,环境保护已经成为我国经济可持续发展的重要基础,随着我国工业经济发展迅速,城市进程不断加快,工业废水的排放量随着工业用水量的增加而快速增长,大部分废水的直接排放又严重污染了江河水体,破坏了生态平衡,间接的影响了人们的生活。污水处理厂作为自然水体的关键保护屏障,其运行好坏将直接影响水环境的安全程度。污水生化处理工艺复杂,影响因素非常多,污水处理厂在实际运行过程中难以保持长期稳定的运行,一旦发生运行故障常常会引起出水水质不达标、运行费用增高和环境二次污染等严重问题。因此,必须对污水处理厂运行状态进行监控,及时诊断出污水处理过程故障并予以处理。污水处理过程运行状态的故障诊断本质上是一个模式分类问题,而在实际状态运行分类中,常常会遇到污水数据集的分布不均衡问题,现有技术存在一定的局限性,在用于不平衡数据分类时,模型分类正确率无法满足要求,给污水生化处理的故障诊断带来了极大的困难;同时在实际过程当中,故障诊断实际上是一个连续的学习过程,其突出的一个特点就是学习不是一次离线进行的,而是数据逐一加入的,不断进行优化的过程。在线学习方法要求在获得下一个数据之前必须完成训练,否则会影响下一步决策的完成,而且污水处理厂的运行出现的故障信息尤为重要,所以在线故障诊断系统更加注重的是快速性和准确性。
技术实现思路
本专利技术的目的在于克服现有技术的不足,提供一种基于不平衡数据聚类的FastRVM污水处理在线故障诊断方法,通过基于聚类的快速相关向量 ...
【技术保护点】
一种Fast RVM污水处理在线故障诊断方法,其特征在于,包括以下步骤:S1.剔除掉污水数据中属性不完整的样本,由于各输入变量量纲的不同,对其进行归一化处理,归一化到[0,1]区间中,并确定历史数据集x
【技术特征摘要】
1.一种FastRVM污水处理在线故障诊断方法,其特征在于,包括以下步骤:S1.剔除掉污水数据中属性不完整的样本,由于各输入变量量纲的不同,对其进行归一化处理,归一化到[0,1]区间中,并确定历史数据集xold和更新测试集xnew;S2.将历史数据中的多数类样本采用基于聚类的快速相关向量机方法进行压缩;S3.根据虚拟少数类向上采样的方法对历史数据中的少数类样本进行扩充;S4.将处理后的历史数据中所有类的样本数据重新组合构成新的历史训练集,并建立“一对一”的快速相关向量机多分类训练模型;S5.从更新测试集xnew中添加k个新样本到模型中进行测试,并保存分类测试结果,将其添加到历史数据集中,去掉历史数据集中前k个样本;S6.回到步骤S2,重新处理不平衡的历史数据,训练模型,不断重复上述过程,直到在线更新数据测试完毕,得到最终在线测试结果,从而实现对污水处理过程的在线运行状态的识别。2.根据权利要求1所述的一种FastRVM污水处理在线故障诊断方法,其特征在于,所述的步骤S2,具体为:S201、假设多数类样本集X={x1,x2,…,xi,…,xn}为n个Rd空间的数据,其中d为样本属性的维数,从n个数据对象中随机选择k个对象作为初始的聚类中心;S202、然后对剩余的样本对象则根据与各个聚类中心的距离分别分配到距离最相近的聚类中心中;计算距离的公式如下,假设cj为第j个类的中心,则xi与cj的距离为:S203、根据集合中的点更新每个类的聚类中心,假设第j个类中的样本为即包含了nj个样本,则该类的聚类中心为其中为类中心cj的第m个属性,计算公式如下:S204、不断重复步骤S202、S203,直到标准测度函数收敛为止,采用均方差作为计算标准测度函数,其形式为:S205、将聚类后的多数类样本进行快速相关向量机分类建模,从而获取设定数量的相关向量,这些相关向量的个数要比原始多数类数据少得多,并且具有一定的代表性,接着用选取的相关向量代替原来的多数类样本从而对多数类样本的压缩。3.根据权利要求1所述的一种FastRVM污水处理在线故障诊断方法,其特征在于,所述的步骤S3,具体为:S301、对少数类中的每一个样本x,以欧式距离为标准计算它到少数类样本集中每个样本的距离,获得其中k个最近邻,并记录近邻样本的下标;S302、根据向上采样的倍率N,对每一个少数类样本x,从其k个最近邻中随机选取N个样本,记为y1,y2,…,yN;S303、在原样本x与yj(j=1,2,…,N)之间进行随机线性插值,构造新的少数类样本pj,即新样本:pj=x+rand(0,1)*(yj-x),j=1,2,…,N(4)其中rand(0,1)表示区间(0,1)内的一个随机数。4.根据权利要求1所述的一种FastRVM污水处理在线故障诊断方法,其特征在于,在步骤S4中,“一对一”的快速相关向量机多分类训练模型,其建立过程如下:处理后的历史数据定义为zn∈Rd,tn∈R,其中N是数据集的样本个数,n是样本序号,d是样本属性的维数,zn为样本的输入,tn...
【专利技术属性】
技术研发人员:许玉格,邓文凯,陈立定,
申请(专利权)人:华南理工大学,
类型:发明
国别省市:广东,44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。