基于眼动信号的视觉诱导晕动检测方法技术

技术编号:15360706 阅读:118 留言:0更新日期:2017-05-17 22:08
本发明专利技术公开了一种基于眼动信号的视觉诱导晕动检测方法,包括以下步骤:1)在受试者头部上佩戴实时检测睁眼和闭眼两种状态下眼动次数的头戴式脑电波传感器;2)对头戴式脑电波传感器采集到的眼动次数数据进行处理,得出受试者在睁眼、闭眼两种状态下的每分钟平均眼动次数;3)判定受试者是否处于晕动状态。本发明专利技术基于眼动信号的视觉诱导晕动检测方法,其通过平均眼动次数来评估受试者是否发生晕动,评估更客观准确,且评估操作更简单,能更方便的对视觉诱导晕动问题进行研究。

Vision induced halo motion detection method based on eye movement signal

The present invention discloses a kind of eye movement signal detection method based on visual induced motion, which comprises the following steps: 1) in subjects wearing on the head of real-time detection of eyes open and close under the two conditions of the number of head mounted eye brain wave sensor; 2) processing times wearing eye movement data type brain wave sensor collection to that, the subjects in the opening and closing eyes under two conditions: the average number of minutes per eye; 3) to determine whether the subjects are motion state. The invention of the visual motion induced by eye movement signal detection method based on the average number of eye movement through to assess whether subjects occurred in motion, more objective and accurate evaluation, and evaluation of the operation more simple, more convenient to study the problem of visual induced motion.

【技术实现步骤摘要】
基于眼动信号的视觉诱导晕动检测方法
本专利技术涉及视觉诱导晕动状态检测
,特别涉及一种基于眼动信号的视觉诱导晕动检测方法。
技术介绍
近年来,显示技术的快速发展使得越来越多的人们不断接触到全新的显示环境,例如高分辨率和强深度对比的宽屏电视机、裸眼3D电视机以及在虚拟现实和游戏中所使用的头戴式显示器。此外,伴随视频处理和计算机图形学技术的发展,出现了大量的包含复杂且频繁的视点晕动的新颖的图像,而这些是传统摄像技术所不能实现的。这些技术的发展与运用,使得图像不再仅仅局限于显示器的平面上,而是体现出图像的深度感、层次感、真实感以及图像的显示分布情况,使画面变得立体逼真,带给了观众人们前所未有的观影体验。先进的显示技术因其强烈的立体感和沉浸感,很大程度上推进了其在各个领域的应用于发展,但也存在一定的弊端,最突出的问题就是在观影过程中往往会引发观影者出现视觉诱导晕动(visuallyinducedmotion,VIM),出现视觉疲劳、视力模糊、复视、恶心、呕吐、眩晕等现象,影响人们的身体健康,同时也阻碍了显示技术的进一步发展与推广。为了降低视觉诱导晕动所带来的风险,我们有必要分析造成视觉诱导晕动状体的因素与条件。而为了实现这一目的,我们必须首先探寻出一种可以定量评估视觉诱导晕动状体的方法。目前,针对立体观影中不适感进行评估的方法主要有主观评估法和客观评估法两大类。主观评估法指通过主观问卷对VIM进行评估,受试者需要根据自身体验回答问卷,再由研究人员对问卷进行统计分析评估VIM程度,该方法简单、便捷,但是主观性大、可靠性低,评估结果不够准确。客观评估法指通过定义某些客观指标对受试者的VIM程度进行公式化评估,该方法不受主观因素的影响,但指标的选取困难、测试复杂。
技术实现思路
鉴于现有评估视觉诱导晕动状态的方法还存在许多不足,本专利技术的目的是提供一种基于眼动信号的视觉诱导晕动检测方法,以实现更客观准确、更方便的评估观影者的视觉诱导晕动状态。本专利技术基于眼动信号的视觉诱导晕动检测方法包括以下步骤:1)在受试者头部上佩戴实时检测睁眼和闭眼两种状态下眼动次数的头戴式脑电波传感器;2)对头戴式脑电波传感器采集到的眼动次数数据进行处理,通过公式:分别计算出受试者在睁眼、闭眼两种状态下的每分钟平均眼动次数,公式中BR即每分钟平均眼动次数,s1为数据段的起始时刻,s2为数据段的结束时刻,单位为秒,blink(i)为头戴式脑电波传感器在s1-s2时间段内的每个采样时刻采集到的眼动数据,采集到眼动信号blink(i)为1,未采集到眼动信号blink(i)为0;3)若受试者在睁眼状态下,其每分钟的平均眼动次数大于27次,则判定受试者发生晕动,反之则判定受试者没有发生晕动;若受试者在闭眼状态下,其每分钟的平均眼动次数大于4次,则判定受试者发生晕动,反之则判定受试者没有发生晕动。本专利技术的有益效果:本专利技术基于眼动信号的视觉诱导晕动检测方法,其通过平均眼动次数来评估受试者是否发生晕动,评估更客观准确,且评估操作更简单,能更方便的对视觉诱导晕动问题进行研究。具体实施方式下面结合实施例对本专利技术作进一步描述。本实施例基于眼动信号的视觉诱导晕动检测方法,包括以下步骤:1)在受试者头部上佩戴实时检测睁眼和闭眼两种状态下眼动次数的头戴式脑电波传感器;2)对头戴式脑电波传感器采集到的眼动次数数据进行处理,通过公式:分别计算出受试者在睁眼、闭眼两种状态下的每分钟平均眼动次数,公式中BR即每分钟平均眼动次数,s1为数据段的起始时刻,s2为数据段的结束时刻,单位为秒,blink(i)为头戴式脑电波传感器在s1-s2时间段内的每个采样时刻采集到的眼动数据,采集到眼动信号blink(i)为1,未采集到眼动信号blink(i)为0;3)若受试者在睁眼状态下,其每分钟的平均眼动次数大于27次,则判定受试者发生晕动,反之则判定受试者没有发生晕动;若受试者在闭眼状态下,其每分钟的平均眼动次数大于4次,则判定受试者发生晕动,反之则判定受试者没有发生晕动。本实施例中在受试者头部上佩戴的检测眼动次数的头戴式脑电波传感器为Muse脑电波智能头带,其采样频率可自行设定,采样周期短,采样准确度高。当然在具体实施中,还可采用其他形式的头戴式脑电波传感器。本实施例基于眼动信号的视觉诱导晕动检测方法,其通过平均眼动次数来评估受试者是否发生晕动,评估更客观准确,且评估操作更简单,能更方便的对视觉诱导晕动问题进行研究。下面通过实验对本基于眼动信号的视觉诱导晕动检测方法的可靠性进行验证:试验中受试者人数为30人,每人佩戴上Muse脑电波智能头带,受试者通过驾驶模拟器诱发视觉晕动,驾驶模拟器由一个可移动的驾驶室和220°的情景投影屏组成,每个受试者在睁眼状态和闭眼状态下分别进行一次测试。睁眼状态下的实验过程为:NON-VIM阶段:受试者未驾驶汽车模拟器,睁眼站立3min,这一阶段受试者没有出现VIMS症状;VIM阶段:受试者在一条弯曲的道路上睁眼驾驶汽车模拟器,诱发受试者产生视觉晕动,发生晕动后受试者仍持续保持睁眼驾驶状态,直到不能继续驾驶,通过休息恢复到不晕状态,在发生晕动到恢复到不晕状态这一阶段为VIM阶段,本阶段实验的时间长度依据受试者个人的晕动状态而定。在整个驾驶流程中,当受试者晕动开始时,受试者需要每分钟口头报告一次主观是否处于晕动状态,同时将Muse脑电波智能头带采集到的眼动信号分为两组,一组为NON-VIM阶段的未晕动眼动数据,一组为VIM阶段的晕动眼动数据。表一为睁眼状态下,各测试者在晕动状态和未晕动状态的每分钟平均眼动次数表:表一闭眼状态下的实验过程为:NON-VIM阶段:受试者未驾驶汽车,闭眼站立3min,这一阶段受试者没有出现VIM症状;VIM阶段:受试者在一条弯曲的道路上睁眼驾驶汽车,诱发受试者产生视觉晕动,发生晕动后受试者仍持续保持睁眼驾驶状态,直到不能继续驾驶,通过闭眼休息恢复到不晕状态。闭眼休息这一阶段为VIM阶段,本阶段实验的时间长度依据受试者个人的晕动状态而定。在整个驾驶流程中,从受试者晕动开始起,受试者需要每分钟口头报告一次主观是否处于晕动状态,同时将Muse脑电波智能头带采集到的眼动信号分为两组,一组为NON-VIM阶段的未晕动眼动数据,一组为VIM阶段的晕动眼动数据。表二为闭眼状态下,各测试者在晕动状态和未晕动状态的每分钟平均眼动次数表:表二我们采用配对t检验来检验表一中未晕动状态和晕动状态下BR值在统计学上是否有显著差异,结果为:t(29)=2.05,P=0.00,这表明睁眼状态下,未晕动状态和晕动状态的BR值在统计学上有显著差异。同样的,采用配对t检验来检验表二中未晕动状态和晕动状态下BR值是否有显著差异,结果为:t(29)=2.05,P=0.00,这表明闭眼状态下,未晕动状态和晕动状态的BR值在统计学上也有显著差异。上述结果验证了本专利技术中用平均每分钟眼动次数来判断受试者是否处于晕动状态是正确的。本实施例中,判断受试者在睁眼状态下是否处于晕动状态的每分钟的平均眼动次数取为27次,从表一看出,实验次数11的未晕动BR为27.32,实验次数20的未晕动BR为30.17,实验次数28的晕动BR为25.32,除这三组数据外,采用本实施例方法均能对睁眼状态本文档来自技高网
...

【技术保护点】
基于眼动信号的视觉诱导晕动检测方法,其特征在于:包括以下步骤:1)在受试者头部上佩戴实时检测睁眼和闭眼两种状态下眼动次数的头戴式脑电波传感器;2)对头戴式脑电波传感器采集到的眼动次数数据进行处理,通过公式:

【技术特征摘要】
1.基于眼动信号的视觉诱导晕动检测方法,其特征在于:包括以下步骤:1)在受试者头部上佩戴实时检测睁眼和闭眼两种状态下眼动次数的头戴式脑电波传感器;2)对头戴式脑电波传感器采集到的眼动次数数据进行处理,通过公式:分别计算出受试者在睁眼、闭眼两种状态下的每分钟平均眼动次数,公式中BR即每分钟平均眼动次数,s1为数据段的起始时刻,s2为数据段的结束时刻,单位为秒,blink...

【专利技术属性】
技术研发人员:易琳刘然张艳珍贾瑞双李丽仙辇伟奇邓泽坤徐苗李德豪刘明明冉静林昌海何永鹏陈一超
申请(专利权)人:重庆市肿瘤研究所重庆大学
类型:发明
国别省市:重庆,50

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1