一种用于质子交换膜燃料电池的石墨烯‑铂催化剂膜的制备方法技术

技术编号:15332792 阅读:240 留言:0更新日期:2017-05-16 20:35
本发明专利技术涉及一种用于质子交换膜燃料电池的石墨烯‑铂催化剂膜的制备方法,具体是先在铜箔上化学气相沉积石墨烯,再在石墨烯上还原氯铂酸,原位生成石墨烯‑铂催化剂,最后通过热复合将石墨烯‑铂催化剂转移到质子交换膜上形成催化剂膜(CCM)。本发明专利技术优点是采用本发明专利技术方法制备CCM可以大幅度提高铂金属催化剂的利用效率。

A preparation method for proton exchange membrane fuel cell graphene platinum catalyst film

The invention relates to a preparation method for proton exchange membrane fuel cell graphene platinum catalyst film, specifically graphene on copper foil to chemical vapor deposition, then on graphene reduction of chloroplatinic acid in situ formation of graphene platinum catalyst, the graphene platinum catalyst to proton transfer the formation of catalyst film through heat exchange membrane composite (CCM). The invention has the advantages that the preparation method of CCM can greatly improve the utilization efficiency of platinum metal catalyst.

【技术实现步骤摘要】
一种用于质子交换膜燃料电池的石墨烯-铂催化剂膜的制备方法
本专利技术涉及燃料电池制造领域,具体地说涉及用于一种质子交换膜燃料电池的石墨烯-铂催化剂膜的制备方法。
技术介绍
膜电极(MEA)是质子交换膜燃料电池的核心部件,其制备方法一般是先制备催化剂膜CCM(catalystcoatedmembrane),然后再与气体扩散层GDL(gasdiffusionlayer)复合而成。制备CCM的一般方法是:先将碳载的含铂催化剂纳米颗粒制成悬浮液墨水,然后用喷雾装置均匀地喷在质子交换膜的两侧表面,干燥或热压后分别形成阴极和阳极催化剂层。质子交换膜燃料电池的能量转换效率主要取决于CCM。在CCM中,如何获得最佳的质子导体/催化剂/电子导体的三相界面十分关键。在传统的CCM制备方法中,催化剂先负载在碳粉(电子导体)上,再通过热压或者使质子交换膜部分溶解溶胀让催化剂与质子导体连接。一颗催化剂只有同时与质子导体和电子导体形成界面才能发挥作用。在传统的墨水喷雾法制备CCM的过程,这一点是很难保证的,这必然会导致部分催化剂的浪费,使单位电解质膜面积功率的铂载量增高,增加了燃料电池的制造成本。
技术实现思路
为了解决上述问题,本专利技术提出了一种用于质子交换膜燃料电池的石墨烯-铂催化剂膜的制备方法,可以大幅度提高质子交换膜燃料电池用CCM中含铂金属催化剂的利用效率。本专利技术的技术方案:一种用于质子交换膜燃料电池的石墨烯-铂催化剂膜的制备方法,其特征在于依次按步骤a~f进行:步骤a对铜箔进行电解抛光;步骤b对铜箔进行真空退火;步骤c对铜箔进行还原;步骤d在铜箔上用化学气相层积法(CVD法)生长石墨烯;步骤e喷洒氯铂酸水溶液;步骤f加还原剂加热使氯铂酸还原为金属铂;步骤g覆盖质子交换膜,热压,使石墨烯-铂转印到质子交换膜上,形成CCM。所用铜箔铜含量大于98%,厚度小于100μm,优选25μm。在所述步骤a中,抛光液的组成为磷酸和乙二醇的混合液,磷酸与乙二醇的体积比为3:1~1:1。电解抛光时,电压2~3V吗,抛光时间20~50分钟。在所述步骤b中,退火温度为1000~1200℃,真空气压小于2Pa,退火时间0.5~1小时。在所述步骤c中,还原气体为氢气,流量100-300sccm或氢分压150~500Pa,还原温度900~1200℃,还原时间10-15分钟。在所述步骤d中,通入流动的甲烷气体作为碳源,流量为0.5~3sccm,在1000~1200℃温度下气相沉积5~20分钟后迅速转移至室温区冷却,并保持甲烷气体流量不变。在所述步骤e中,氯铂酸水溶液的浓度为0.25-1wt%。在步骤f中,所用还原剂为乙二醇、甲酸、甲醛。在步骤g中,热压温度为75-95℃。本专利技术的优点是由于石墨烯是一张导电二维网,铂催化剂位于质子交换膜和石墨烯的中间,形成三明治式结构,可以保证每个铂催化剂颗粒的都同时与质子导体和电子导体接触,使其发挥电催化作用。同时石墨烯有很好的导电性能,二维平面结构也比炭黑更容易形成连续电子通道。还有,石墨烯中碳原子的sp2杂化电子对金属铂有很好的锚定作用,使其不易迁移、聚集、长大,会大幅提高CCM的使用寿命。具体实施方式一种用于质子交换膜燃料电池的石墨烯-铂催化剂膜的制备方法,先在金属铜箔上制备大面积石墨烯,再在石墨烯表面上喷晒氯铂酸,随后在还原气氛下使其还原成金属铂,将此附有石墨烯-铂层的铜箔覆盖在质子交换膜上,热压,使石墨烯-铂层转移到质子交换膜上,形成CCM。由于石墨烯是一张导电二维网,铂催化剂位于质子交换膜和石墨烯的中间,形成三明治式结构,可以保证每个铂催化剂颗粒的都同时与质子导体和电子导体接触,使其发挥电催化作用。同时石墨烯有很好的导电性能,二维平面结构也比炭黑更容易形成连续电子通道。还有,石墨烯中碳原子的sp2杂化电子对金属铂有很好的锚定作用,使其不易迁移、聚集、长大,会大幅提高CCM的使用寿命。实施例1取一块AlfaAesar#46365铜箔(纯度98%,厚度25μm)在磷酸+乙二醇电解液(体积比3:1)加电压2V电解抛光30分钟,取出后置于一直径为1英寸的石英圆柱形腔体中,抽真空至1Pa,升温至1035℃,退火1小时,然后以200sccm的流量通入流动的氢气,并控制气压腔体内气压在150-500Pa范围内,对铜箔进行表面还原处理。维持温度不变,通入0.1sccm流量的甲烷气体进行化学气相沉积,在铜箔表面生长大面积石墨烯。化学气相沉积20分钟后,将铜箔推向未见热的冷端进行冷却,到室温后取出。将铜箔小心展开,超声喷洒0.25wt%浓度的氯铂酸水溶液,然后超声喷洒1wt%浓度的乙二醇溶液,红外线加热20分钟。取一张Nafion膜,两侧用刚取出的铜箔覆盖,95℃热滚压,使附着有金属铂的石墨烯转移到Nafion膜上,制成CCM。本文档来自技高网...

【技术保护点】
一种用于质子交换膜燃料电池的石墨烯‑铂催化剂膜的制备方法,其特征在于依次按步骤a~f进行:步骤a,对铜箔进行电解抛光;步骤b,对铜箔进行真空退火;步骤c,对铜箔进行还原;步骤d,在铜箔上用化学气相层积法,又是CVD法,生长石墨烯;步骤e,喷洒氯铂酸水溶液;步骤f,加还原剂加热使氯铂酸还原为金属铂;步骤g,覆盖质子交换膜,热压,使石墨烯‑铂转印到质子交换膜上,形成CCM。

【技术特征摘要】
1.一种用于质子交换膜燃料电池的石墨烯-铂催化剂膜的制备方法,其特征在于依次按步骤a~f进行:步骤a,对铜箔进行电解抛光;步骤b,对铜箔进行真空退火;步骤c,对铜箔进行还原;步骤d,在铜箔上用化学气相层积法,又是CVD法,生长石墨烯;步骤e,喷洒氯铂酸水溶液;步骤f,加还原剂加热使氯铂酸还原为金属铂;步骤g,覆盖质子交换膜,热压,使石墨烯-铂转印到质子交换膜上,形成CCM。2.根据权利要求1所述的一种用于质子交换膜燃料电池的石墨烯-铂催化剂膜的制备方法,其特征是所用铜箔铜含量大于98%,厚度小于100μm。3.根据权利要求2所述的一种用于质子交换膜燃料电池的石墨烯-铂催化剂膜的制备方法,其特征是所述的铜箔的厚度为25μm。4.根据权利要求1所述的一种用于质子交换膜燃料电池的石墨烯-铂催化剂膜的制备方法,其特征是在所述步骤a中,电解抛光所使用的抛光液的组成为磷酸和乙二醇的混合液,磷酸与乙二醇的体积比为3:1~1:1;所述的电解抛光时,电压2~3V,抛光时间20~50分钟。5.根据权利要求1所述的一种用于质子交换膜燃料电池的石墨烯-铂催化剂膜的制备方法,其特征是在所述...

【专利技术属性】
技术研发人员:陈融周江东张宝春朱光明
申请(专利权)人:南通百应能源有限公司
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1