The present invention provides a satellite image destriping method and device, wherein, the method comprises the following steps: the histogram statistics of the satellite image, and the gray level histogram preprocessing to eliminate the interference caused by the abnormal sensor; by fitting the histogram after pretreatment using the Gauss mixture model; Gauss mixture model fitting based on the satellite image is divided into at least one sub image; determining the reference value difference of each column pixel gray value and gray standard reference value of each of the sub image, and according to the gray value reference value and the reference value of standard deviation of each of the sub image restoration; each after the repair of the sub images are synthesized by gray superposition method, get a satellite image with noise removal. The method and the device for removing the band noise of the satellite image provided by the utility model can avoid the blurring and detail loss of the image, and do not need manual intervention, and the calculation speed is fast, and the band noise can be effectively removed.
【技术实现步骤摘要】
一种卫星影像条带噪声去除方法及装置
本申请涉及光学遥感图像处理
,特别涉及一种卫星影像条带噪声去除方法及装置。
技术介绍
当前,由于传感器对辐射的敏感程度不同,高分辨率陆地观测卫星影像经常伴有条带噪声,严重影响了影像的视觉效果和定量分析。当前较为常用的条带噪声去除方法有滤波法、变分模型法、空间域匹配法等。滤波类方法主要使用傅里叶变换、小波变化、主成分变换等技术,设计特定的滤波器,抑制影像信息中的噪声成分,但是噪声成分往往难以明确区分,与条带噪声具有相同频率的影像结构信息也会被滤除,造成影像模糊。变分模型方法引入正则化技术对影像整体求解,但是需要影像噪声的先验知识及多通道信息,并且要建立复杂的数学模型,运算量大。空间域匹配法主要包括矩匹配和直方图匹配等方法,其中,矩匹配的方法可以通过对卫星影像采用标准矩匹配进行处理,从而抑制标准矩匹配处理过程中造成的灰度畸变。然而,这些方法通常假设每个传感器的成像视场在统计上是相似的,通过一定的规则调整噪声影像的灰度值,实现条带噪声的去除,此类方法运算简单,但处理小范围且包含多种地物影像时,其理论假设不能成立,因此需要进一步研究。应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的
技术介绍
部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
技术实现思路
本申请实施方式的目的在于提供一种卫星影像条带噪声去除方法及装置,较好地避免了影像的模糊及细节丢失,且无需人工干预,计算速度快,能够有效地去除条带噪声。为实现上述目的,本申请 ...
【技术保护点】
一种卫星影像条带噪声去除方法,其特征在于,所述方法包括:统计所述卫星影像的灰度直方图,并对所述灰度直方图进行预处理,以消除由于传感器异常带来的干扰;利用高斯混合模型对预处理后的灰度直方图进行拟合;基于拟合得到的高斯混合模型,将所述卫星影像分割为至少一个子影像;确定各个所述子影像中每一列像素的灰度均值参考值和灰度标准差参考值,并根据所述灰度均值参考值和所述灰度标准差参考值对各个所述子影像进行修复;将修复后的各个所述子影像通过灰度叠加的方式进行合成,得到去除条带噪声的卫星影像。
【技术特征摘要】
1.一种卫星影像条带噪声去除方法,其特征在于,所述方法包括:统计所述卫星影像的灰度直方图,并对所述灰度直方图进行预处理,以消除由于传感器异常带来的干扰;利用高斯混合模型对预处理后的灰度直方图进行拟合;基于拟合得到的高斯混合模型,将所述卫星影像分割为至少一个子影像;确定各个所述子影像中每一列像素的灰度均值参考值和灰度标准差参考值,并根据所述灰度均值参考值和所述灰度标准差参考值对各个所述子影像进行修复;将修复后的各个所述子影像通过灰度叠加的方式进行合成,得到去除条带噪声的卫星影像。2.根据权利要求1所述的方法,其特征在于,对所述灰度直方图进行预处理具体包括:从所述灰度直方图的左右两端分别去除预设数量的边缘像素,得到所述灰度直方图的主体区间;采用具备预设尺寸的窗口对所述灰度直方图的主体区间进行曲线平滑处理,得到平滑处理后的灰度直方图。3.根据权利要求1所述的方法,其特征在于,所述高斯混合模型中包括至少一个高斯分量,各个所述高斯分量由均值系数、标准差系数以及权重系数确定;其中,各个所述高斯分量中的均值系数、标准差系数以及权重系数通过下述方式确定:在所述预处理后的灰度直方图中确定至少一个极值点,并记录各个所述极值点的横坐标;在相邻的所述极值点之间确定所述灰度直方图中的谷值点,并记录各个所述谷值点的横坐标;根据所述预处理后的灰度直方图、各个极值点的横坐标以及各个谷值点的横坐标,分别确定所述均值系数、标准差系数以及权重系数的初始值;构建与各个所述高斯分量相关的最大似然模型方程组,并基于所述均值系数、标准差系数以及权重系数的初始值进行迭代计算,直至迭代结果中的均值系数、标准差系数以及权重系数均满足预设收敛条件为止。4.根据权利要求3所述的方法,其特征在于,按照下述公式确定所述均值系数、标准差系数以及权重系数的初始值:其中,τm(0)表示第m个高斯分量中权重系数的初始值,h(x)表示所述预处理后的灰度直方图,x表示所述预处理后的灰度直方图中的像素灰度值,Vm表示第m个谷值点的横坐标,μm(0)表示第m个高斯分量中均值系数的初始值,Pm表示第m个极值点的横坐标,表示第m个高斯分量中标准差系数的初始值。5.根据权利要求4所述的方法,其特征在于,按照下述公式构建与各个所述高斯分量相关的最大似然模型方程组以及进行迭代计算:其中,Rm(t)表示第m个高斯分量在第i次迭代计算时对应的最大似然函数,τm(t)表示第i次迭代计算时第m个高斯分量中的权重系数值,p(x|μm(t),σm(t))表示第i次迭代下的第m个高斯分量,M为高斯分量的总个数,μm(t)表示第i次迭代计算时第m个高斯分量中的均值系数值,σm(t)表示第i次迭代计算时第m个高斯分量中的标准差系数值,Xmin表示所述预处理后的灰度...
【专利技术属性】
技术研发人员:康一飞,孙明伟,胡旭东,
申请(专利权)人:苏州中科天启遥感科技有限公司,
类型:发明
国别省市:江苏,32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。