The invention discloses a multi Lane horizontal exhaust telemetry equipment data processing method, the method includes the following steps: acquisition of vehicle emission data using exhaust telemetry equipment, simultaneous acquisition of other influence factors, including: models, velocity and acceleration of the vehicle, as well as the current time, weather, temperature, humidity, pressure, wind direction and wind speed, and the remote acquisition of the vehicle emission data were pretreated respectively; the measured emission concentration data are divided into ten levels, each level range as the median exhaust emission concentration level, the training of the sample by the depth of the neural network, training model; when when the vehicle traveling side by side, according to the models, the measured vehicle speed and acceleration, and the current time Weather, temperature, humidity, pressure, wind direction and wind speed, the emission concentration of the vehicle was obtained by the established model.
【技术实现步骤摘要】
一种多车道水平式尾气遥测设备数据处理方法
本专利技术涉及一种多车道水平式尾气遥测设备数据处理方法,属于城市路网机动车尾气实时遥感监
技术介绍
机动车污染已成为我国空气污染的重要来源,是造成灰霾、光化学烟雾污染的重要原因,机动车污染防治的紧迫性日益凸显。而目前对于在用机动车的尾气检测,广泛使用的方法有四类:无负荷测试方法(包括怠速法和双怠速法)、工况法(稳态工况法、瞬态工况法和简易瞬态工况法)、遥感检测方法以及车载尾气检测技术。传统检测方法在城市中机动车检测领域得到广泛使用,并且效果很好。但是离线检测方法通过模拟机动车行驶状态来检测尾气,无法准确地反映出尾气排放状况。尾气遥测设备利用多种机动车尾气检测器对路网中每一辆机动车进行尾气检测,实现了机动车尾气的实时在线监测,为控制机动车尾气排放总量、实现节能减排、治理城市大气污染、改善人居环境,提供了监测数据方面的支持。尾气遥测设备是一种应用遥测技术来测量由汽车尾气排气污染物高低的一种装置,它的原理是通过排气污染物引起的长距离光度的变化的一种检测仪器。使用时将该仪器放在道路两侧,由仪器发出一束横穿道路的光,当汽车从该仪器经过时,汽车所排出的尾气会使光束的特性发生变化,从而检测出该汽车的尾气排放的尾气污染物的高低,它是在不影响汽车的正常行驶下完成的。目前国内外的汽车尾气遥测仪采用的光源有下面三种,红外可调谐二极管激光器(TDL)、不分光红外线吸收型(NDIR)传感器及紫外氘灯的光,对于点燃式发动机汽车排气污染物排放气体中的CO、CO2、HC、NO四种气体含量进行测量。这种检测汽车尾气的方法是目前世界上最先进 ...
【技术保护点】
一种多车道水平式尾气遥测设备数据处理方法,其特征在于包括以下步骤:(1)利用尾气遥测设备对各机动车的尾气排放浓度进行远程采集,同时采集机动车尾气排放浓度的影响因素,包括:机动车的车型、速度与加速度,以及当前时间、当前天气、当前温度、当前湿度、当前压强,当前风向与风速,并对远程采集到的机动车尾气排放浓度及机动车尾气排放浓度的影响因素数据分别进行预处理,构成样本数据;(2)将机动车尾气排放浓度分为k个等级,取每个等级范围的中值作为该等级的尾气排放浓度,利用深度神经网络方法建立深度神经网络模型,对步骤(1)所得样本数据进行训练;(3)基于步骤(2)所建立的深度神经网络模型,当尾气遥测设备的控制和数据分析处理单元判定出现机动车并排行驶情况时,根据步骤(1)所测机动车的车型、速度与加速度,以及当前时间、当前天气、当前温度、当前湿度、当前压强,当前风向与风速,通过所建立的深度神经网络模型得到该机动车的尾气排放浓度。
【技术特征摘要】
1.一种多车道水平式尾气遥测设备数据处理方法,其特征在于包括以下步骤:(1)利用尾气遥测设备对各机动车的尾气排放浓度进行远程采集,同时采集机动车尾气排放浓度的影响因素,包括:机动车的车型、速度与加速度,以及当前时间、当前天气、当前温度、当前湿度、当前压强,当前风向与风速,并对远程采集到的机动车尾气排放浓度及机动车尾气排放浓度的影响因素数据分别进行预处理,构成样本数据;(2)将机动车尾气排放浓度分为k个等级,取每个等级范围的中值作为该等级的尾气排放浓度,利用深度神经网络方法建立深度神经网络模型,对步骤(1)所得样本数据进行训练;(3)基于步骤(2)所建立的深度神经网络模型,当尾气遥测设备的控制和数据分析处理单元判定出现机动车并排行驶情况时,根据步骤(1)所测机动车的车型、速度与加速度,以及当前时间、当前天气、当前温度、当前湿度、当前压强,当前风向与风速,通过所建立的深度神经网络模型得到该机动车的尾气排放浓度。2.根据权利要求1所述的多车道水平式尾气遥测设备数据处理方法,其特征在于:步骤2中,所述深度神经网络模型由四层约束玻兹曼机(RBM)组成,深度神经网络模型的结构表示为N-1000-500-250-10,其中,N表示样本数据维数,1000、500、250、10分别代表第一到四层的神经元个数。3.根据权利要求2所述的多车道水平式尾气遥测设备数据处理方法,其特征在于:所述四层RBM网络模型,每层均为自编码网络,分为编码和解码两部分,其中编码部分的映射函数为f(x),...
【专利技术属性】
技术研发人员:康宇,岳龙川,李泽瑞,陈绍冯,昌吉,
申请(专利权)人:中国科学技术大学,
类型:发明
国别省市:安徽,34
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。