当前位置: 首页 > 专利查询>同济大学专利>正文

一种基于脑机接口的驾驶警觉度实时监测装置及方法制造方法及图纸

技术编号:15330406 阅读:140 留言:0更新日期:2017-05-16 13:52
一种基于脑机接口的驾驶警觉度实时监测装置,用于通过实时监控驾驶人员大脑警觉度信息,包括:脑电信号采集单元和脑电信息处理服务端;脑电信号采集单元包括脑电信号传感器,用于通过脑电信号传感器采集脑电信号;驾驶员脑电信息处理服务端,用于根据脑电信号采集单元监测脑电信号,并根据脑电信号与警觉度监控模型生成警觉度类型识别结果,根据警觉度类型识别结果生成并发送预警报告。

Device and method for real-time monitoring of driving alertness based on brain computer interface

A driver's alertness real-time monitoring device based on brain computer interface, the driver for the brain alert information, through real-time monitoring including: EEG signal acquisition unit and the EEG information server; EEG signal acquisition unit including EEG signal sensor, used by EEG sensors to collect EEG; EEG driver the information processing server, according to EEG monitoring EEG signal acquisition unit, and according to the EEG monitoring and alert model generation alert type identification results, according to the alert type identification results and send warning report.

【技术实现步骤摘要】
一种基于脑机接口的驾驶警觉度实时监测装置及方法
本专利技术涉及一种脑电信号检测装置,特别是涉及一种基于脑机接口的驾驶警觉度实时监测装置及方法。
技术介绍
目前,驾驶疲劳是交通安全的致命威胁之一。自可操控汽车诞生以来,预防和控制由于驾驶员的疲劳引起的人身财产损失一直是交通安全研究领域的重要课题。由于驾驶疲劳主要与操控者的精神注意力状态有关,因此,监测驾驶员的警觉度变化是发现驾驶疲劳现象、提供安全预警的有效途径之一。现有技术中,可用于警觉度检测的生理信号指标种类繁多。根据信号检测的显隐性,可分为显式和隐式信号指标两类。用于驾驶警觉分析的常用显式指标信号包括眼动、头部姿态检测以及嘴部形态检测等。其中,眼睑闭合度(PERCLOS,PercentageofEyeIidCIosureoverthePupiI,overTime)是研究最多、效果最好的显式信号指标。这些显式信号可以精准捕捉到危险驾驶情况,但往往实时性不足,不能及时预警潜在的警觉度异常变化,如瞌睡、注意力分心等。因而,基于人体生物信号检测的隐式信号指标作为另一类监测手段被应用于驾驶警觉度研究中来。常用的隐式信号包括任务反应时、心率变异、血压以及脑电信号等。这其中,脑电信号因其具有能准备反应大脑认知状态的细微变化、时间分辨率高等特点,因而成为使用更为频繁的隐式信号指标。自发脑电信号反映了大脑组织的电活动及大脑的功能状态,在不同的警觉度状态下,自发脑电中的不同节律也呈现出各异的活动状态。一般认为,快波β波是大脑皮层处在紧张状态时的主要脑电活动表现,α波是皮层处在安静状态时的主要表现,慢波δ波是睡眠状态下的主要表现。目前的脑电信号的警觉度研充分析主要利用覆盖整个头皮层的导联频谱数据进行分析,使用模式识别算法进行警觉度统计监测,离线分析占比重较大。目前,尚未有较好的导联筛选方法能够在保证评测效果的前提下,使用较少导联进行实时警觉度监测,以适合于实际的穿戴脑电设备使用。综上,现有技术中披露的警觉度检测技术存在实时性较低,导联复杂不适合驾驶员穿戴,自适应性低等技术问题。
技术实现思路
鉴于以上现有技术的缺点,为解决现有技术中实时性较低,导联复杂不适合驾驶员穿戴,自适应性低的技术问题,本专利技术的目的在于提供一种基于脑机接口的驾驶警觉度实时监测装置及方法,用于通过实时监控驾驶人员大脑警觉度信息,包括:脑电信号采集单元和脑电信息处理服务端;脑电信号采集单元包括脑电信号传感器,用于通过所述脑电信号传感器采集脑电信号;驾驶员脑电信息处理服务端,用于根据所述脑电信号采集单元监测所述脑电信号,并根据所述脑电信号与所述警觉度监控模型生成警觉度类型识别结果,根据所述警觉度类型识别结果生成并发送预警报告。于本专利技术的一实施方式中,脑电信号采集单元,包括:传感器固定装置、脑电信号输出单元;传感器固定装置,用于将脑电信号传感器穿戴于测试人员头部;脑电信号输出单元,用于放大脑电信号并输出。于本专利技术的一实施方式中,驾驶员脑电信息处理服务端,包括:警觉度模型选择单元、警觉度检测结果生成单元、类型识别报警单元;警觉度模型选择单元,用于设置系统工作信息并选择警觉度监控模型;警觉度检测结果生成单元,用于根据系统工作信息实时监测脑电信号,并根据脑电信号与警觉度监控模型生成警觉度检测结果;类型识别报警单元,用于根据警觉度检测结果得出警觉度类型识别结果,根据警觉度类型识别结果生成并发送预警报告。于本专利技术的一实施方式中,警觉度模型选择单元,包括:滤波参数设置组件、适用场景判断组件、选择结果生成组件、检测要求设置组件、预警阈值设置组件;滤波参数设置组件,用于设置分类识别时间窗口长度及滤波参数;适用场景判断组件,用于判断适用场景,得出场景判断结果;选择结果生成组件,用于根据场景判断结果选择警觉度监控模型,得出警觉度监控模型选择结果,其中,警觉度监控模型包括:SVM(SupportVectorMachine)模型、GMMcluster(GaussianMixtureModelCluster)模型和无模型;检测要求设置组件,用于预设检测要求;预警阈值设置组件,用于根据检测要求设置警觉度预警阈值。于本专利技术的一实施方式中,警觉度检测结果生成单元,包括:脑电信号截取组件、脑电信息滤波组件、警觉度特征计算组件;脑电信号截取组件,用于根据分类识别时间窗口长度异步截取脑电信号,得到单位时间内的脑电信息;脑电信息滤波组件,用于根据滤波参数对脑电信息进行滤波,得到滤波脑电信息;警觉度特征计算组件,用于根据滤波脑电信息计算得出警觉度特征。于本专利技术的一实施方式中,类型识别报警单元,包括:模型选择结果及警觉度特征接收组件、分类识别结果生成组件、危险状态判断组件、警报组件、循环更新组件;模型选择结果及警觉度特征接收组件,用于接收警觉度监控模型选择结果及警觉度特征;分类识别结果生成组件,用于根据警觉度监控模型选择结果使用对应警觉度监控模型对警觉度特征分类,获得警觉度类型识别结果;危险状态判断组件,用于根据警觉度识别结果判断是否处于危险状态;警报组件,用于在处于危险状态时,发出警报并生成预警报告;循环更新组件,用于在未处于危险状态时,循环执行从通过传感装置采集脑电信号至根据警觉度检测结果得出警觉度类型识别结果,根据警觉度类型识别结果生成并发送预警报告的步骤,更新警觉度类型识别结果。于本专利技术的一实施方式中,将传感器穿戴于测试人员头部,包括:传感器固定装置将脑电传感器固定于测试人员头部;传感器与脑电信号采集单元连接。于本专利技术的一实施方式中,通过脑电信号传感器采集脑电信号,包括:脑电信号采集单元通过脑电传感器采集脑电信号;脑电信号输出单元放大脑电信号并输出。于本专利技术的一实施方式中,一种驾驶员脑电信号处理方法,包括:设置系统工作信息并选择警觉度监控模型;根据系统工作信息实时监测脑电信号,并根据脑电信号与警觉度监控模型生成警觉度检测结果;根据警觉度检测结果得出警觉度类型识别结果,根据警觉度类型识别结果生成并发送预警报告。于本专利技术的一实施方式中,警觉度模型选择单元设置系统工作信息并选择警觉度监控模型,包括:设置分类识别时间窗口长度及滤波参数;判断适用场景,得出场景判断结果;根据场景判断结果选择警觉度监控模型,得出警觉度监控模型选择结果,其中,警觉度监控模型包括:SVM模型、GMMcluster模型和无模型;预设检测要求;预警阈值设置组件根据检测要求设置警觉度预警阈值。于本专利技术的一实施方式中,警觉度检测结果生成单元根据系统工作信息实时监测脑电信号,并根据脑电信号与警觉度监控模型生成警觉度检测结果,包括:根据分类识别时间窗口长度异步截取脑电信号,得到单位时间内的脑电信息;根据滤波参数对脑电信息进行滤波,得到滤波脑电信息;根据滤波脑电信息计算得出警觉度特征。于本专利技术的一实施方式中,类型识别报警单元根据警觉度检测结果得出警觉度类型识别结果,根据警觉度类型识别结果生成并发送预警报告,包括:接收警觉度监控模型选择结果及警觉度特征;根据警觉度监控模型选择结果使用对应的警觉度监控模型对警觉度特征分类,获得警觉度类型识别结果;根据警觉度类型识别结果判断是否处于危险状态;在警觉度类型识别结果判断处于危险状态时,发出警报并生成预警报告;在警觉度类型识别结果判断未处于危险状态本文档来自技高网
...
一种基于脑机接口的驾驶警觉度实时监测装置及方法

【技术保护点】
一种基于脑机接口的驾驶警觉度实时监测装置,其特征在于,用于通过实时监控驾驶人员大脑警觉度信息,包括:脑电信号采集单元和脑电信息处理服务端;脑电信号采集单元包括脑电信号传感器,用于通过所述脑电信号传感器采集脑电信号;驾驶员脑电信息处理服务端,用于根据所述脑电信号采集单元监测所述脑电信号,并根据所述脑电信号与所述警觉度监控模型生成警觉度类型识别结果,根据所述警觉度类型识别结果生成并发送预警报告。

【技术特征摘要】
1.一种基于脑机接口的驾驶警觉度实时监测装置,其特征在于,用于通过实时监控驾驶人员大脑警觉度信息,包括:脑电信号采集单元和脑电信息处理服务端;脑电信号采集单元包括脑电信号传感器,用于通过所述脑电信号传感器采集脑电信号;驾驶员脑电信息处理服务端,用于根据所述脑电信号采集单元监测所述脑电信号,并根据所述脑电信号与所述警觉度监控模型生成警觉度类型识别结果,根据所述警觉度类型识别结果生成并发送预警报告。2.根据权利要求1所述的装置,其特征在于,所述脑电信号采集单元,包括:传感器固定装置、脑电信号采集单元、脑电信号输出单元;传感器固定装置,用于将所述脑电信号传感器穿戴于测试人员头部;脑电信号输出单元,用于放大所述脑电信号并输出。3.根据权利要求1所述的装置,其特征在于,所述驾驶员脑电信息处理服务端,包括:警觉度模型选择单元、警觉度检测结果生成单元、类型识别报警单元;警觉度模型选择单元,用于设置系统工作信息并选择警觉度监控模型;警觉度检测结果生成单元,用于根据所述系统工作信息实时监测所述脑电信号,并根据所述脑电信号与所述警觉度监控模型生成警觉度检测结果;类型识别报警单元,用于根据所述警觉度检测结果得出警觉度类型识别结果,根据所述警觉度类型识别结果生成并发送预警报告。4.根据权利要求3所述的装置,其特征在于,所述警觉度模型选择单元,包括:滤波参数设置组件、适用场景判断组件、选择结果生成组件、检测要求设置组件、预警阈值设置组件;滤波参数设置组件,用于设置分类识别时间窗口长度及滤波参数;适用场景判断组件,用于判断适用场景,得出场景判断结果;选择结果生成组件,用于根据所述场景判断结果选择警觉度监控模型,得出警觉度监控模型选择结果,其中,所述警觉度监控模型包括:SVM模型、GMMcluster模型和无模型;检测要求设置组件,用于预设检测要求;预警阈值设置组件,用于根据所述检测要求设置警觉度预警阈值。5.根据权利要求3所述的装置,其特征在于,所述警觉度检测结果生成单元,包括:脑电信号截取组件、脑电信息滤波组件、警觉度特征计算组件;脑电信号截取组件,用于根据所述分类识别时间窗口长度异步截取所述脑电信号,得到单位时间内的脑电信息;脑电信息滤波组件,用于根据所述滤波参数对所述脑电信息进行滤波,得到滤波脑电信息;警觉度特征计算组件,用于根据所述滤波脑电信息计算得出警觉度特征。6.根据权利要求3或5所述的装置,其特征在于,所述类型识别报警单元,包括:模型选择结果及警觉度特征接收组件、分类识别结果生成组件、危险状态判断组件、警报组件、循环更新组件;模型选择结果及警觉度特征接收组件,用于接收所述警觉度监控模型选择结果及所述警觉度特征;分类识别结果生成组件,用于根据所述警觉度监控模型选择结果使用对应警觉度监控模型对所述警觉度特征分类,获得警觉度类型识别结果;危险状态判断组件,用于根据所述警觉度识别结果判断是否处于...

【专利技术属性】
技术研发人员:蒋昌俊闫春钢张亚英曹磊
申请(专利权)人:同济大学
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1