The invention discloses a method for estimation of MLP neural networks based on the vehicle emission factor, which comprises the following steps: vehicle emission data acquisition equipment remote monitoring using real road vehicle exhaust on the motor vehicle emissions, the volume concentration of the CO2, CO, HC and NO, and other related data, including: models and the speed and acceleration of vehicles, as well as the temperature, humidity, pressure, wind direction and wind speed; on vehicle exhaust emissions data collected are pre processed and the establishment of motor vehicle exhaust emission factor database CO, HC and NO; vehicle exhaust emission factor database based on NO and CO, HC, and motor vehicle exhaust equipment acquisition remote sensing monitoring to other relevant data for the MLP neural network model of CO, HC and NO respectively, which can realize the maneuver Real time online estimation of vehicle exhaust emission factors.
【技术实现步骤摘要】
一种基于MLP神经网络的机动车尾气排放因子估计方法
本专利技术涉及一种机动车尾气排放因子估计方法,属于环境处理
技术介绍
目前,我国的空气质量问题非常严重,灰霾现象时有发生,特别是京津冀地区更加常见。研究表明,机动车尾气排放是城市空气污染的重要来源。我国亟需采取适当措施以减少机动车尾气排放,而制定措施的前提是我们对机动车尾气排放情况具有清楚的了解。机动车尾气排放因子可反映机动车的排放水平,对机动车尾气排放因子的传统评估方法是建立影响机动车排放的参数与污染物排放之间的关系,称之为排放因子模型。国外研究排放因子模型的时间较长,已经建立了MOBOLE、EMFAC、IVE、CMEM、COPERT等多个模型。而大部分都是通过台架试验的方法得到数据建立模型,由于实际道路情况复杂,这样的模型无法真实反映在实际道路上行驶的机动车的尾气排放。近年来,利用隧道试验来评估排放因子的方法得到了广泛的应用,该方法通过现场收集车流和气象数据,测量隧道进出口污染物浓度,利用质量平衡计算出各种污染物的排放因子,从而反映出实际路况下机动车污染物的排放特性。但由此得到的往往是平均行驶速度下的排放因子或总测试时段内的平均排放因子,因此无法考察机动车行驶工况(不同瞬态车速和加/减速度)对排放特性及排放因子的影响。申请号201510745166.0的专利技术专利公布了一种基于机动车比功率的速度对车辆排放因子修正方法,根据车辆行驶速度计算机动车比功率,得到不同速度区间的比功率分布情况,并利用平均速度计算的修正系数对其进行修正。该方法在计算过程中不仅需要车辆的速度、加速度数据,还需要基本排放 ...
【技术保护点】
一种基于MLP神经网络的机动车尾气排放因子估计方法,其特征在于包括以下步骤:步骤1:利用机动车尾气遥感监测设备采集的实际道路上的机动车尾气排放数据,即机动车行驶时排放的CO2、CO、HC及NO的体积浓度,以及其他相关数据,所述其他相关数据包括:机动车的车型、速度与加速度,以及当前温度、湿度、压强、风向与风速;步骤2:对步骤1中采集到的机动车的尾气排放数据进行预处理,并建立机动车尾气CO、HC及NO的排放因子数据库;步骤3:基于步骤2所得到的机动车尾气CO、HC及NO的排放因子数据库,以及步骤1中采集到的其他相关数据分别建立针对于CO、HC和NO的MLP神经网络模型,依据MLP神经网络模型即实现机动车尾气排放因子的实时在线估计。
【技术特征摘要】
1.一种基于MLP神经网络的机动车尾气排放因子估计方法,其特征在于包括以下步骤:步骤1:利用机动车尾气遥感监测设备采集的实际道路上的机动车尾气排放数据,即机动车行驶时排放的CO2、CO、HC及NO的体积浓度,以及其他相关数据,所述其他相关数据包括:机动车的车型、速度与加速度,以及当前温度、湿度、压强、风向与风速;步骤2:对步骤1中采集到的机动车的尾气排放数据进行预处理,并建立机动车尾气CO、HC及NO的排放因子数据库;步骤3:基于步骤2所得到的机动车尾气CO、HC及NO的排放因子数据库,以及步骤1中采集到的其他相关数据分别建立针对于CO、HC和NO的MLP神经网络模型,依据MLP神经网络模型即实现机动车尾气排放因子的实时在线估计。2.根据权利要求1所述的基于MLP神经网络的机动车尾气排放因子估计方法,其特征在于:所述步骤2中,对机动车尾气排放数据进行预处理的方法如下:根据机动车尾气遥感监测设备采集到的机动车行驶时排放的CO2、CO、HC及NO的体积浓度数据计算机动车尾气CO、HC及NO的排放因子,方法如下:其中,CO(gL-1)、HC(gL-1)和NO(gL-1)分别指机动车尾气CO、HC及NO的排放因子,单...
【专利技术属性】
技术研发人员:康宇,李泽瑞,岳龙川,曹洋,谭小彬,
申请(专利权)人:中国科学技术大学,
类型:发明
国别省市:安徽,34
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。