The invention provides a multi axis milling cutter axis modeling method and tool runout, first given considering the error model of bearing inner ring spindle radial error motion model and tool installation, and through the establishment of local coordinate system to represent various components and error of spindle system, and then a method of tool axis motion model installation error of spindle motion error and handle with the spring chuck using coordinate transformation. The present invention in considering the influence of tool spindle motion error and installation error of the milling cutter axis movement situation, solve the problem of mathematical modeling tool axis motion model, and the unknown parameters in the model were calibrated using particle swarm algorithm. The model can clearly describe the movement of the spindle, the proposed calibration method has the advantages of simple measuring process, data processing speed, and provides a theoretical basis for the suppression of the tool runout and improve the processing accuracy, which can be analyzed according to the error of the model is introduced to all the parts in the machining process.
【技术实现步骤摘要】
考虑刀具跳动的多轴铣削刀具轴线建模方法
本专利技术属于多轴数控加工的
,涉及到考虑机床主轴运动误差与刀具安装误差的铣削刀具轴线运动建模问题的研究,具体为一种考虑刀具跳动的多轴铣削刀具轴线建模方法。
技术介绍
在数控加工中,刀具跳动会导致刀具轴线的瞬时位姿偏离理想状态,改变刀具与工件之间的相对位置关系,引起每齿切厚不均匀,容易产生过切、欠切等现象。刀具跳动无法彻底避免,严重地制约了加工精度的进一步提高。在有刀具跳动的情况下,建立刀具轴线运动模型成为了当前研究的热点问题之一。由于机床主轴、刀柄以及刀具存在制造与安装的误差,所以在铣削过程中不可避免地存在刀具回转轴线与刀具轴线不重合的现象,通常使用若干个位置参数来定义刀具轴线与刀具回转轴线的相对位置,并描述刀具轴线的运动。在现有的研究中,并没有将机床主轴运动误差与刀具安装误差作为研究对象有效地集成。上海交通大学的研究将刀具跳动简化为包括偏心距ρ、偏心角λ、倾斜角τ和扭转角φ等参数的模型,并通过实验数据进行标定。这种方式虽然便于理解和描述刀具跳动现象,但不利于进一步阐明刀具装夹系统制造、安装误差对刀具跳动的耦合作用及物理意义,也不利于建立各误差因素与刀具跳动的定量、精确关系。为了解决因机床主轴运动误差与刀具安装误差的铣削刀具轴线运动建模的难题,本专利技术将主轴动态误差分析仪金属标准球的运动轨迹作为铣削刀具轴线运动轨迹,建立了主轴运动误差与刀具安装误差模型,分析了铣削刀具轴线运动的影响,从而得出了刀具轴线运动模型,并使用优化算法标定了模型中未知参数。通过实验验证可以看到本文所建立的模型能够清晰地描述主轴的运动, ...
【技术保护点】
一种考虑刀具跳动的多轴铣削刀具轴线建模方法,其特征在于:包括以下步骤:步骤1:在多轴铣削加工中心前端轴承安装位置建立坐标系CS1,其中前端轴承孔处圆心为CS1的坐标原点O
【技术特征摘要】
1.一种考虑刀具跳动的多轴铣削刀具轴线建模方法,其特征在于:包括以下步骤:步骤1:在多轴铣削加工中心前端轴承安装位置建立坐标系CS1,其中前端轴承孔处圆心为CS1的坐标原点O1,CS1的X1、Y1、Z1轴分别与机床坐标系CS0的X0、Y0、Z0轴平行;在坐标系CS1中,建立后端轴承位置处主轴轴心A1运动轨迹的参数方程为建立前端轴承位置处主轴轴心A2运动轨迹的参数方程为其中,h为前端轴承与后端轴承安装位置间距,ω为主轴转速;a1、a2、b1与b2为描述主轴运动的径向参数,θ1、θ2为描述主轴运动的角度参数;建立坐标系CS2,取机床主轴底端中心为CS2的坐标原点O2,主轴轴线方向为CS2的Z2轴方向,主轴底端平面P2为CS2的X2Y2平面,O1A2与A1A2两直线所在平面P1与平面P2的交线为CS2的X2轴,得到坐标系CS2到坐标系CS1的变换矩阵M21为其中a2,x,b2,x,c2,x是CS2坐标系的X2轴在坐标系CS1中的方向余弦,a2,y,b2,y,c2,y是CS2坐标系的Y2轴在坐标系CS1中的方向余弦,a2,z,b2,z,c2,z是CS2坐标系的Z2轴在坐标系CS1中的方向余弦,与为原点O2在坐标系CS1中坐标:l1为A1与A2的间距,l2为A2与O2的间距;步骤2:在多轴铣削加工中心刀柄下端面处建立坐标系CS3,取刀柄下端面中心为CS3的坐标原点O3,刀柄轴线作为CS3的Z3轴,CS3的X3轴、Y3轴分别平行于CS2轴的X2轴、Y2轴,刀柄下端面中心与主轴下端面中心的距离为l3+Δ3,其中刀柄下端面中心与主轴下端面中心的设计距离为l3,Δ3为刀柄的制造误差;得到CS3与CS2的变换矩阵M32为:步骤3:建立坐标系CS4,取多轴立式铣削加工中心弹簧夹头下端面中心为CS4的原点O4,弹簧夹头的下端面为CS4的X4Y4平面Π1,过点O4且与坐标系CS3的X3Z3平面平行的平面为Π2,Π1与Π2的交线为CS4的X4轴,弹簧夹头轴线为CS4的Z4轴;得到坐标系CS4到坐标系CS3的变换矩阵为:其中a4,x,b4,x,c4,x分别是CS4坐标系的X4轴在坐标系CS3中的方向余弦,a4,y,b4,y,c4,y...
【专利技术属性】
技术研发人员:孙惠斌,赵紫东,常智勇,张栋梁,
申请(专利权)人:西北工业大学,
类型:发明
国别省市:陕西,61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。