一种用于传感器悬置测量的通用弹性隔振装置的设计方法制造方法及图纸

技术编号:15326042 阅读:120 留言:0更新日期:2017-05-16 10:21
本发明专利技术属于隔振技术领域,公开了一种用于传感器悬置测量的通用弹性隔振装置的设计方法。该装置包括底座、固定在底座上的梯形支架、传感器和连接传感器与梯形支架的橡胶弹性元件,橡胶弹性元件有四个,分别将梯形支架的四个角点与传感器相连,设计方法以隔振装置的固有频率为设计目标,以橡胶弹性元件的刚度、悬挂长度、伸长量及悬挂结构的尺寸为设计参数进行优化设计,达到为测量传感器提供最大振动衰减效果的目的。

A universal elastic vibration isolation device and its design method for sensor mounting measurement

The invention belongs to the field of vibration isolation technology, and discloses a universal elastic vibration isolation device and a design method for measuring the suspension of a sensor. The device comprises a base fixed on the base, the trapezoid bracket, sensor and sensor and trapezoidal support rubber elastic element, rubber elastic element four, respectively, the four corners of the trapezoidal support connected with sensor design method based on natural frequency of vibration isolating device as the design objectives, to optimize the design of rubber elasticity element stiffness, suspension structure and suspension elongation length, the size of the design parameters, to provide maximum vibration attenuation effect for the purpose of measuring sensor.

【技术实现步骤摘要】
一种用于传感器悬置测量的通用弹性隔振装置及设计方法
本专利技术涉及隔振
,具体涉及一种用于传感器悬置测量的通用弹性隔振装置及设计方法。
技术介绍
在使用各类传感器进行测声(如声探头)、测距(如激光测距仪)等测量过程时,测量结果对传感器的放置稳定性具有很高的要求,若外界的振动干扰通过传感器的安装基座、支架等机构传递给传感元件,将会造成较大的测量误差,降低测量精度。因此需要使用隔振装置对传感器进行悬置固定来降低外部环境振动对测量的影响,而隔振装置中的弹性元件刚度匹配设计、隔振结构设计是调校隔振性能的主要环节,对增大适用频率范围、提高隔振系数具有重要的作用。由于不同传感器的结构、固定方式和使用环境存在差别,因此目前尚无针对传感器悬置测量的通用隔振装置与设计方法。现有的装置主要是针对某一种特定传感器而设计,其设计方法一般是对被隔振物体进行模拟外界环境振动激励下响应的仿真分析来优化调整隔振系统的参数,并通过试验验证来反复调试以满足隔振性能要求。此类隔振装置的适用范围较窄,其设计方法在设计过程中需要反复进行仿真与试验的调试验证,在工程应用上效率较低。因此,针对此类悬置测量传感器的测量过程稳定性要求提出通用弹性隔振装置及设计方法是很有必要的。
技术实现思路
为解决上述问题,本专利技术采用以下技术方案实现:提供一种橡胶弹性元件通用隔振装置进行隔振悬置固定,以隔振装置的固有频率为设计目标,以橡胶弹性元件的刚度、悬挂长度、伸长量及悬挂结构的尺寸为设计参数进行优化设计,达到为测量传感器提供最大振动衰减效果的目的。一种用于传感器悬置测量的通用弹性隔振装置,其特征在于:包括底座、固定在底座上的梯形支架、传感器和连接传感器与梯形支架的弹性元件,所述的弹性元件有四个,分别将梯形支架的四个角点与传感器相连。优选地,所述的弹性元件是橡胶弹性元件。一种用于传感器悬置测量的通用弹性隔振装置的设计方法,包括以下步骤:(1)在传感器的质量需要在橡胶弹性元件的承重范围内的条件下,选取若干原长相同、横截面积不同的橡胶弹性元件样本进行拉伸刚度测量,通过回归分析得出伸长量为ΔLmin时的最小刚度Kmin与横截面积S间的对应关系Kmin=F1(S);(2)在传感器的质量需要在橡胶弹性元件的承重范围内的条件下,选取若干横截面积相同、原长不同的橡胶弹性元件样本进行拉伸刚度测量,通过回归分析得出伸长量为ΔLmin时的最小刚度Kmin与原长L0间的对应关系Kmin=F2(L0);(3)f0=F(W1,W2,H,M,α,β,L0,S)式中,W1为橡胶弹性元件上部两个固定点的间距、W2为橡胶弹性元件下部两个固定点的间距、H为上部固定点连线与下部固定点间连线的距离、α为上部橡胶弹性元件与水平方向的夹角、β为下部橡胶弹性元件与水平方向的夹角、M为传感器的质量、L0为橡胶弹性元件原长、S为橡胶弹性元件横截面积,为使垂直、水平两个方向上的隔振系统固有频率都达到最低,因此将上部橡胶弹性元件与水平方向的夹角α设置为45°,且橡胶弹性元件的伸长后长度有L1=L2和L3=L4,Li=L0+ΔLimin;式中,L1和L2为上部两橡胶弹性元件的伸长后长度,L3和L4为下部两橡胶弹性元件的伸长后长度;(4)将传感器固定到隔振装置上后,令上部、下部橡胶弹性元件所受的拉力分别为F1、F3,传感器的重力为G,根据传感器在垂向受力平衡关系可得到2sinα·F1=G+2sinβ·F3;(5)将其伸长后长度L1和L3均按照刚度达到最小时的伸长量来设置,相应可以得出上、下部橡胶弹性元件所受的拉力为F1=K1minΔL1min,F3=K3minΔL3min,因此有L1=L01+ΔL1min,L3=L03+ΔL3min,这里K1min和K3min为上、下部橡胶弹性元件的最小刚度,L01和L03为其原长,ΔL1min和ΔL3min为其在刚度达到最小时的伸长量;(6)设定上部橡胶弹性元件原长L01的初始值,并计算得出L1值,由W1=2cosα·L1、计算得出W1、W2、H、β随L3值变化时的数值,得到隔振系统在水平、垂直方向上的整体刚度,由得出该系统在水平、垂直方向上的固有频率;(7)根据传感器的质量、隔振装置结构尺寸等因素选出隔振系统固有频率最低时对应的W1、W2、H、β、S、L0参数数值。将传感器用橡胶弹性元件进行如图1所示的四点弹性悬挂。橡胶弹性元件的上、下四个固定点分别设置在一个四边形框架的四个角点上,其中W1为橡胶弹性元件上部固定点间距,W2为下部间距,H为上、下部固定点间高度,α为上部橡胶弹性元件与水平方向的夹角,β为下部橡胶弹性元件与水平方向的夹角,M为传感器的质量,K1、K2、K3、K4为四个弹性橡胶元件的刚度,L1、L2、L3、L4为四个弹性橡胶元件的伸长后长度。在测量之前,根据待测传感器的质量、适用频率范围等技术特征来调整上述各参数,以降低整个隔振装置的固有频率,增大有效隔振范围。在测试中,将该框架固定在待测位置,通过橡胶弹性元件来隔离外界环境的振动干扰。该传感器悬置隔振装置的隔振原理如图3中力学模型所示。橡胶弹性元件K1和K2间、K3和K4间为并联方式,K1、K2与K3、K4间也为并联方式,则整个悬挂系统在垂直方向上的刚度Kv=Kv1+Kv2=sinα(K1+K2)+sinβ(K3+K4),在水平方向上的刚度KH=KH1+KH2=cosα(K1+K2)+cosβ(K3+K4)。对于隔振系统,在不考虑阻尼的前提下,其隔振系数η可以表示为式(1)。式(1)中为f为外部激励频率,f0为隔振系统固有频率,且f0与系统质量、刚度间的关系如式(2)所示。当f/f0=1时,隔振系统发生共振,当f/f0>√2时,隔振系统可以起到隔振效果,在实际应用中,一般取f/f0=2.5~5。若要提高隔振系统的隔振性能,则需要降低隔振系数。由于外部激励频率f为已知,因此可以通过降低隔振系统固有频率f0来降低隔振系数,则应减小隔振系统的刚度或增加系统质量。由于系统质量主要为传感器的质量,而传感器在确定后其质量不会改变,并且通过附加质量块的方式来增加传感器质量会影响其测量精度,因此这里主要通过减小隔振系统刚度的方式来降低其固有频率。根据橡胶的刚度非线性特点,其刚度随伸长量的增加会出现一个最小值,并且刚度会随着横截面积的减小和原长的增大而减小,因此这里可以在满足橡胶承重、装置结构尺寸要求的前提下,通过调节橡胶弹性元件的材料组分、横截面积、原长、伸长量等参数来降低其刚度,最终实现降低隔振系统固有频率的目的:材料组分:这里不针对橡胶的材料组分展开分析,假定该橡胶材料经过前期筛选已确定为刚度最小;伸长量:在橡胶材料确定的前提下,选取若干原长和横截面积均不同的橡胶弹性元件样本进行拉伸刚度测量,得出每种样本的刚度随其伸长量ΔL的变化情况,并确定出刚度最小时对应的伸长量ΔLmin;横截面积:选取若干原长相同、横截面积不同的橡胶弹性元件样本进行拉伸刚度测量,通过回归分析得出伸长量为ΔLmin时的最小刚度Kmin与横截面积S间的对应关系Kmin=F1(S);原长:选取若干横截面积相同、原长不同的橡胶弹性元件样本进行拉伸刚度测量,通过回归分析得出伸长量为ΔLmin时的最小刚度Kmin与原长L0间的对应关系Kmin=F2(L0)。在本文档来自技高网...
一种用于传感器悬置测量的通用弹性隔振装置的设计方法

【技术保护点】
一种用于传感器悬置测量的通用弹性隔振装置,其特征在于:包括底座、固定在底座上的梯形支架、传感器和连接传感器与梯形支架的弹性元件,所述的弹性元件有四个,分别将梯形支架的四个角点与传感器相连。

【技术特征摘要】
1.一种用于传感器悬置测量的通用弹性隔振装置,其特征在于:包括底座、固定在底座上的梯形支架、传感器和连接传感器与梯形支架的弹性元件,所述的弹性元件有四个,分别将梯形支架的四个角点与传感器相连。2.根据权利要求1所述的一种用于传感器悬置测量的通用弹性隔振装置,其特征在于:所述的弹性元件是橡胶弹性元件。3.一种用于传感器悬置测量的通用弹性隔振装置的设计方法,其特征在于:包括以下步骤:(1)选取若干原长和横截面积均不同的橡胶弹性元件样本进行拉伸刚度测量,得出每种样本的刚度随其伸长量ΔL的变化情况,并确定出刚度最小时对应的伸长量ΔLmin;(2)在传感器的质量需要在橡胶弹性元件的承重范围内的条件下,选取若干原长相同、横截面积不同的橡胶弹性元件样本进行拉伸刚度测量,通过回归分析得出伸长量为ΔLmin时的最小刚度Kmin与横截面积S间的对应关系Kmin=F1(S);(3)在传感器的质量需要在橡胶弹性元件的承重范围内的条件下,选取若干横截面积相同、原长不同的橡胶弹性元件样本进行拉伸刚度测量,通过回归分析得出伸长量为ΔLmin时的最小刚度Kmin与原长L0间的对应关系Kmin=F2(L0);(4)以f0=F(W1,W2,H,M,α,β,L0,S)为目标函数,其中W1为橡胶弹性元件上部两个固定点的间距、W2为橡胶弹性元件下部两个固定点的间距、H为上部固定点连线与下部固定点间连线的距离、α为上部橡胶弹性元件与水平方向的夹角、β为下部橡胶弹性元件与水平方向的夹角、M为传感器的质量、L0为橡胶弹性元件原长、S为橡胶弹性元件横截面积;(5)为使垂直、水平两个方向上的隔振系...

【专利技术属性】
技术研发人员:王振郑轶杨群毛宇峰于砚廷李腾苏伟
申请(专利权)人:山东省科学院海洋仪器仪表研究所
类型:发明
国别省市:山东,37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1