The invention relates to a method for predicting periodic material performance uncertainty analysis method. The method uses theory to design a mesoscopic microstructure cell loading boundary conditions, and prove the equivalent performance equivalent performance obtained by the finite element simulation under the condition of calculation can represent the entire material. The invention of materials in typical micro cell scale configuration analysis to obtain material equivalent elastic modulus in the process of fully considering the cell size and the properties of the matrix material uncertainty, uncertainty analysis in macro and micro propagation equivalent process, get the actual fluctuation of material properties of the range, to ensure the safety of the.
【技术实现步骤摘要】
本专利技术涉及周期性材料不确定等效分析方法领域,特别涉及一种预测周期性材料性能的不确定性分析方法;
技术介绍
工程实际常用含微细观结构的材料一般为有序或无序的轻质多孔金属或非金属材料,如类桁架材料、蜂窝材料与泡沫材料等。这类材料因其具有的轻质、高比强度、高比刚度与多功能性,逐渐在实际工程中不断推广应用。有序轻质多孔材料的特点是可以被表示为典型微结构胞元在不同方向的周期性排布,通过对微结构胞元的分析可获取整个材料的宏观力学性能如弹性模量。通常这种分析可利用代表体元法进行,即对满足周期性的典型胞元加上一定的周期性条件与位移边界条件,利用有限元计算的方法获取典型胞元的响应值,通过支反力与位移计算得到周期性材料的等效弹性模量,从而实现对周期性材料性能的预测。工程物理系统多同时受到不同种类不确定性的影响,如材料性质、几何特性、边界条件和载荷分布等,可使用随机变量或者区间变量对不确定性进行量化,而系统的响应可表示为多元随机变量或区间变量的函数,在周期性材料宏微观性能等效分析过程中,不确定性波动将对等效后材料弹性性能造成影响,真实弹性性能将在一定区间内随机分布。
技术实现思路
本专利技术要解决的技术问题为:建立一种预测周期性材料性能的不确定性分析方法,周期性材料的弹性模量由典型微结构胞元的有限元计算得到,在分析中施加合适的周期性条件与边界条件以模拟周期性材料内部位移与变形关系。通过对微结构胞元基体材料属性与几何尺寸加以一定不确定性波动,利用宏微观等效过程中的不确定传播可得到材料弹性性能的不确定性结果。本专利技术解决上述技术问题采用的技术方案为:一种预测周期性材料性能的不确 ...
【技术保护点】
一种预测周期性材料性能的不确定性分析方法,其特征在于实现步骤如下:步骤(1)针对实际目标材料内部细观尺度的周期性排布规律,选取有效的立方形微结构胞元,该胞元在各个方向进行阵列能够重组复现材料内部构性分布规律,且满足对称性要求,记为典型胞元;步骤(2)对于上一步得到的典型胞元利用工程软件的CAD(计算机辅助设计)工具建立数字化几何模型,以关键点确定胞元的关键位置坐标,以线连结点确定胞元的关键结构,从而得到简化的胞元几何模型,上述即为几何建模过程;步骤(3)将典型胞元几何模型进一步转化为可用于数值计算的有限元模型,基于CAE(计算机辅助工程)工具,读入基体材料的基本性能数据与胞元尺寸数据,对所述典型胞元几何模型进行参数设置、材料属性设置、网格划分的有限元建模过程,以梁单元模拟胞元关键结构,各梁即为前述几何模型中关键点连线,各梁端点即为关键点,最终建立梁单元模拟下的典型胞元有限元模型,上述即为有限元建模过程;步骤(4)得到有限元模型后,施加特定周期性条件以模拟典型胞元在材料中的相互作用,在CAE工具内体现为关键点之间的位移关系方程,以实现不同关键点之间位移耦合的效果;步骤(5)进一步施加边界 ...
【技术特征摘要】
1.一种预测周期性材料性能的不确定性分析方法,其特征在于实现步骤如下:步骤(1)针对实际目标材料内部细观尺度的周期性排布规律,选取有效的立方形微结构胞元,该胞元在各个方向进行阵列能够重组复现材料内部构性分布规律,且满足对称性要求,记为典型胞元;步骤(2)对于上一步得到的典型胞元利用工程软件的CAD(计算机辅助设计)工具建立数字化几何模型,以关键点确定胞元的关键位置坐标,以线连结点确定胞元的关键结构,从而得到简化的胞元几何模型,上述即为几何建模过程;步骤(3)将典型胞元几何模型进一步转化为可用于数值计算的有限元模型,基于CAE(计算机辅助工程)工具,读入基体材料的基本性能数据与胞元尺寸数据,对所述典型胞元几何模型进行参数设置、材料属性设置、网格划分的有限元建模过程,以梁单元模拟胞元关键结构,各梁即为前述几何模型中关键点连线,各梁端点即为关键点,最终建立梁单元模拟下的典型胞元有限元模型,上述即为有限元建模过程;步骤(4)得到有限元模型后,施加特定周期性条件以模拟典型胞元在材料中的相互作用,在CAE工具内体现为关键点之间的位移关系方程,以实现不同关键点之间位移耦合的效果;步骤(5)进一步施加边界条件以模拟受到外载荷后通过材料分布在单个典型胞元上的位移与力的作用,在CAE工具内体现为典型胞元立方体顶点的强制位移与固定;步骤(6)施加周期性条件与边界条件后,在CAE工具内进行仿真计算,并利用后处理功能提取得到各关键点支反力、位移等结果数据,根据支反力与位移计算相应的胞元等效模量,将模量以结果文件的形式输出,上述操作即为计算与输出过程;步骤(7)将整个流程中所包含的几何建模过程、有限元建模过程、施加周期性...
【专利技术属性】
技术研发人员:王磊,蔡逸如,王晓军,刘易斯,刘东亮,夏海军,耿新宇,
申请(专利权)人:北京航空航天大学,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。