一种基于遥感影像与高程数据的滑坡提取方法技术

技术编号:15253662 阅读:158 留言:0更新日期:2017-05-02 19:11
本发明专利技术公开了一种基于大范围遥感影像与高程数据的滑坡提取方法,该方法针对研究区遥感影像和相应的高程数据,利用显著性概念对影像中的裸土区进行增强,得到显著性概率图,即每个像素属于滑坡的概率图。通过形态学运算中的膨胀操作,将影像中琐碎的大斑块裸土连通成较大区域,进而增强与细小的滑坡区域的差异,便于将非滑坡的裸土区域剔除,得到滑坡潜在区。最后基于滑坡常发生在山区这一特点,结合高程数据将位于山坡处的滑坡潜在区保留,得到最终滑坡提取结果。该方法克服了目前针对滑坡提取的实施例研究范围小,情况简单等问题,为大范围实用化的快速提取滑坡提供了技术基础,可以在灾后应急响应和快速定位滑坡区域等应用中发挥重要作用。

Landslide extraction method based on remote sensing image and elevation data

The invention discloses a method for extracting a wide range of remote sensing images and elevation data of landslide based on this method, according to the study area of remote sensing image and the corresponding elevation data are enhanced by the significant concept of bare soil area on the image, a significant probability map, each pixel belongs to the probability map of landslide. Through the expansion of operations in morphology operation, the image in the trivial large patches of bare soil connected into larger area, thus enhancing the difference and the landslide area of small, easy to remove non bare soil area of landslide, landslide has potential area. Finally, based on the characteristics of landslides in mountainous areas, the landslide potential areas are located on the slope, and the final landslide extraction results are obtained. This method overcomes the disadvantages in the embodiment of landslide research scope from the small, simple problems, provide the technical basis for rapid extraction of landslide for a wide range of practical, can play an important role in the post disaster emergency response and rapid positioning in the application of regional landslide.

【技术实现步骤摘要】

:本专利技术涉及图像处理、模式识别领域,是一种基于大范围遥感影像与高程数据的滑坡提取方法。
技术介绍
:滑坡,作为主要的自然灾害之一,经常对人类的生命和财产构成严重的威胁。在过去的几十年,频繁发生的滑坡已经引起了社会的极大关注。快速、准确的检测滑坡不仅有助于人们对滑坡发生的机理进行理解,更可以为灾后采取应急措施提供指导性数据,为受灾程度评估提供可靠的依据。卫星传感器的不断发展和遥感数据分辨率的持续提高使得大范围滑坡监测成为可能。目前,滑坡检测的方法多基于变化检测,通过对比同一研究区的多个时相影像判断滑坡的发生。其中,归一化植被指数NDVI(NormalizedDifferenceVegetationIndex)常用来增强影像中的植被信息,进而将滑坡从植被中区分出来。其他光谱指数和分类后处理方法也常用来提取滑坡,尤其针对多波段遥感影像。面向对象的方法在滑坡提取中的应用也较为广泛,但是提取效果会在较大程度上受图像分割精度影响和不同类型地物的光谱特征以及纹理特征等影响,算法的鲁棒性受到较大的限制。机器学习方法,作为新兴的模型训练工具,在滑坡提取领域已经取得了良好的效果。但是机器学习方法通常需要大量的训练样本,而且对样本数据分布有较高的要求。这大大限制了机器学习方法基于一景遥感影像训练的模型在其他遥感影像的使用效率和实用性。此外,针对滑坡提取的研究区大多只覆盖不到5′x5′的范围,而且滑坡类型比较简单,背景地物多为植被,提取难度较小,对大型研究区和复杂背景地物情况研究较少,算法的实用性亟待提高。本专利技术利用了显著性思想,基于30米分辨率的遥感影像和DEM(DigitalElevationModel)数据,提出了一种针对大范围遥感数据的滑坡提取方法。利用遥感影像的光谱波段特征通过计算图像的显著性概率图,将滑坡的潜在区域提取出来,并结合DEM高程信息,提高滑坡提取精度。
技术实现思路
:本专利技术的目的是针对大尺度的遥感影像,提供一种快速、准确的滑坡提取方法。该方法采用了“显著性”概念,即整幅图像容易引起视觉感官注意的区域。通过选取合适的波段图像,使滑坡区域相对于背景地物有更高的灰度值,可以认为是显著性区域,进而采用显著性区域提取的方法提取滑坡。本专利技术在滑坡灾害中,特别是重大滑坡灾害,可以对复杂背景地物下发生的滑坡高效监测,得到滑坡发生区域,从而为受灾程度评估和灾后应急响应提供数据支撑。为达到上述目的,本专利技术的技术解决方案是:第一步:针对研究区选取一景Landsat8影像(覆盖空间2°x2°)和相应区域的30米分辨率的DEM数据为实验数据;第二步:Landsat8影像去云处理;1.根据Landsat8影像不同波段的特性,选取第7波段的图像作为提取滑坡的基础数据,因为第7波段通常用来做地质构造调查,可以较好的区分滑坡与其他裸土背景地物,而且裸土区域在该波段图像中呈现的灰度值高于植被区域。2.利用Landsat8影像第9波段的水汽强吸收特性,将第9波段图像二值化(灰度值大于200的像素认为是云),生成云的掩膜,去除7波段图像中的云。第三步:生成显著性概率图:以滑坡区域为显著性区域,采用FASA(AFast,Accurate,andSize-AwareSalientObjectDetection)方法计算遥感影像中每个像素属于滑坡区域的概率,主要分为两步:1.计算每种颜色的空间中心和方差(1)计算每个像素的位置向量Pi和颜色向量Colori其中,xi和yi是像素Pi的横、纵坐标,L*(Pi),a*(Pi)和b*(Pi)是像素Pi在颜色空间CIEL*a*b*中每个通道的灰度值,CIEL*a*b*颜色空间常用于图像分割和颜色量化。(2)计算每个像素Pi在水平和垂直方向的空间中心(Mx,My)和颜色方差(Vx,Vy),为后面对高方差的像素区域增强做准备其中,Mx(Pi)和Vx(Pi)分别表示像素Pi在水平方向上的空间中心和颜色方差,垂直方向上的空间中心和颜色方差可以采用相似的公式计算。颜色权重wc(Colori,Colorj)可以通过高斯函数计算:(3)将图像中的颜色根据直方图分布重新量化成Nc种颜色,计算每种颜色的空间中心和颜色方差:其中,Qck表示量化后的第k种颜色,hj表示由第i种颜色量化为第j种颜色的像素个数。2.计算图像中每个像素属于显著性物体的概率像素Pi属于滑坡潜在区域的概率为:其中,nw和nh分别代表图像的宽度和高度,系数μ和∑分别为:第四步:利用形态学方法去除裸土背景地物1.通常情况下,裸土与滑坡区域相比占地面积较大,而且呈现多个斑块琐碎连接的形式。因此,利用形态学原理,对显著性概率图连续做6次膨胀运算,将图像中琐碎的裸土斑块连通起来,形成大的连通区。膨胀运算的具体原理如下:其中,f(x,y)是输入图像,b(x,y)是结构元素。由于显著性概率图描述的是像素属于滑坡的概率,通过连续多次膨胀运算可以将本来面积较大的裸土斑块连接起来,使得裸土整体变得更大,而滑坡区域占地较小,所受影响不大。2.计算每个连通区的外包矩形的宽和高,如果大于整幅图像的宽和高的十分之一,则认为是占地面积较大的裸土区域,从显著性概率图中剔除相应的区域,即灰度值设置为0。第五步:结合DEM数据,进一步提取滑坡区域由于滑坡多发生在山坡上,在高程数据中相应的滑坡区域灰度值较高,将高程图像中灰度值小于等于5的像素都从步骤四得到的结果图像中去除,得到最终的滑坡提取结果图。附图说明:图1为本专利技术实施例提供的流程图。图2为本专利技术实施例提供的全景图(第7波段图像)。图3为本专利技术实施例提供的全景DEM数据。图4为本专利技术实施例提供的去云后全景图(第7波段图像)。图5为本专利技术实施例提供的显著性概率全景图。图6为本专利技术实施例提供的滑坡潜在区域结果全景图。图7为本专利技术实施例提供的滑坡提取结果全景图。图8为本专利技术实施例提供的滑坡提取结果详细实例一图:(a)为滑坡实例假彩色图(第5,4,3波段组合图像);(b)为滑坡提取结果图。图9为本专利技术实施例提供的滑坡提取结果详细实例二图:(a)为滑坡实例假彩色图(第5,4,3波段组合图像);(b)为滑坡提取结果图。图10为本专利技术实施例提供的滑坡提取结果详细实例三图:(a)为滑坡实例假彩色图(第5,4,3波段组合图像);(b)为滑坡提取结果图。具体实施方式:下面将结合本申请实施例中的附图对本申请实施例中的技术方案进行描述。显然,所描述的实施例仅是本申请的部分实施例,不是全部实例。本申请的实施例以尼泊尔靠近喜马拉雅山脉区域为研究区,选取2015年6月1日30米分辨率的一景Landsat8影像(覆盖空间2°x2°)(如图2所示)和相应区域的30米分辨率的DEM数据为实验数据(如图3所示)。图2所示的云可以利用Landsat8的第9波段图像生成云掩膜,进而被去除,得到图4。如图5所示,FASA方法可以较好的增强裸土区域信息,削弱植被等信息。但是,裸土中有大部分属于建设用地等非滑坡区域,而且呈现琐碎的大斑块状;滑坡呈现细小、琐碎状。为了更好的区分裸土中非滑坡区域与滑坡区域,采用形态学运算中的膨胀方法使得大斑块的琐碎裸土区域相互连通,而相比之下,滑坡区域仍然占地面积较小。因此,通过对比膨胀运算后连通区的外接矩形与图像的尺寸,将宽和高大于图像本文档来自技高网
...

【技术保护点】
一种基于大范围遥感影像和高程数据的滑坡提取方法,其特征在于,该方法针对大面积滑坡,实施过程包括遥感影像去云处理、显著性区域增强、形态学操作提取连通区和结合高程信息提取滑坡,具体步骤操作如下:(1)针对研究区选取一景30米分辨率的多光谱Landsat8遥感影像(覆盖空间2°x2°)和相应区域的30米分辨率的高程数据为实验数据;(2)Landsat8影像去云处理:根据Landsat8影像不同波段的特性,选取第7波段的图像作为提取滑坡的基础数据,因为第7波段通常用来做地质构造调查,可以较好的区分滑坡与其他裸土背景地物,而且裸土区域在该波段图像中呈现的灰度值高于其他地物;利用Landsat8影像第9波段的水汽强吸收特性,将第9波段图像二值化(灰度值大于200的像素认为是云),生成云的掩膜,去除7波段图像中的云;(3)生成显著性概率图:以滑坡区域为显著性区域,采用FASA(A Fast,Accurate,and Size‑Aware Salient Object Detection)方法计算遥感影像中每个像素属于滑坡区域的概率;(4)利用形态学方法去除裸土背景地物:通常情况下,非滑坡的裸土与滑坡区域相比占地面积较大,而且呈现多个大斑块琐碎连接的特征;因此,利用形态学原理,对显著性概率图连续进行6次膨胀运算,将图像中琐碎的裸土斑块连通起来,形成大的连通区;由于显著性概率图描述的是像素属于滑坡的概率,通过连续多次膨胀运算可以将本来面积较大的裸土斑块连接起来,使得裸土整体变得更大,而滑坡区域占地较小,所受影响不大;计算每个连通区的外包矩形的宽和高,如果大于整幅图像的宽和高的十分之一,则认为是占地面积较大的裸土区域,从显著性概率图中剔除相应的区域,将其灰度值设置为0;(5)结合高程数据,进一步提取滑坡区域:由于滑坡多发生在山坡上,在高程数据中相应的滑坡区域灰度值较高,将高程图像中灰度值小于等于5的像素都从步骤(4)得到的结果图像中去除,得到最终的滑坡提取结果图。...

【技术特征摘要】
1.一种基于大范围遥感影像和高程数据的滑坡提取方法,其特征在于,该方法针对大面积滑坡,实施过程包括遥感影像去云处理、显著性区域增强、形态学操作提取连通区和结合高程信息提取滑坡,具体步骤操作如下:(1)针对研究区选取一景30米分辨率的多光谱Landsat8遥感影像(覆盖空间2°x2°)和相应区域的30米分辨率的高程数据为实验数据;(2)Landsat8影像去云处理:根据Landsat8影像不同波段的特性,选取第7波段的图像作为提取滑坡的基础数据,因为第7波段通常用来做地质构造调查,可以较好的区分滑坡与其他裸土背景地物,而且裸土区域在该波段图像中呈现的灰度值高于其他地物;利用Landsat8影像第9波段的水汽强吸收特性,将第9波段图像二值化(灰度值大于200的像素认为是云),生成云的掩膜,去除7波段图像中的云;(3)生成显著性概率图:以滑坡区域为显著性区域,采用FASA(AFast,Accurate,andSize-AwareSalientObjectDetection)方法计算遥感影像中每个像素属于滑坡区域的概率;(4)利用形态学方法去除裸土背景地物:通常情况下,非滑坡的裸土与滑坡区域相比占地面积较大,而且呈现多个大斑块琐碎连接的特征;因此,利用形态学原理,对显著性概率图连续进行6次膨胀运算,将图像中琐碎的裸土斑块连通起来,形成大的连通区;由于显著性概率图描述的是像素属于滑坡的概率,通过连续多次膨胀运算可以将本来面积较大的裸土斑块连接起来,使得裸土整体变得更大,而滑坡区域占地较小,所受影响不大;计算每个连通区的外包矩形的宽和高,如果大于整幅图像的宽和高的十分之一,则认为是占地面积较大的裸土区域,从显著性概率图中剔除相应的区域,将其灰度值设置为0;(5)结...

【专利技术属性】
技术研发人员:于博陈方
申请(专利权)人:中国科学院遥感与数字地球研究所
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1