本发明专利技术涉及一种基于RFID数据的路口车辆分流量预测方法,包括:步骤1、收集RFID数据;步骤2、数据预处理去除重复数据;步骤3、基于时间相位划分的车辆转向判别计算路口转向车流量;步骤4、提取特征构建特征集;步骤5、使用训练数据集训练预测模型;步骤6、以测试数据集作为预测模型输入预测其输出。本发明专利技术主要根据车辆的RFID数据,采用机器学习算法实现路口车辆分流量的预测,为智能交通信号灯的智能控制提供决策依据。
【技术实现步骤摘要】
本专利技术涉及智能交通领域,一种基于RFID数据的路口车辆分流量预测方法。
技术介绍
现如今评判一个城市的宜居性很大程度上是依赖城市的交通状况,城市糟糕的交通给人们的出行带来了极大的不便。如何更加智能的治理规划城市交通成为当今社会的研究热点,因此智能交通应运而生。本专利技术借助机器学习算法以车辆RFID数据为基础通过模型训练预测路口车辆分流量大小,目的是为实现交通信号灯的智能控制提供决策依据。目前公开发表的文章或者专利主要的数据来源是GPS数据、磁感应线圈数据和图像数据,对RFID数据研究较少。另外对路口车流量的预测大都停留在路口单一方向上的流量预测,对每个路口各个方向的分流量预测很少有人涉及。
技术实现思路
有鉴于此,本专利技术的目的在于提供一种基于RFID数据的路口车辆分流量预测方法,以实现对路口各个方向上车辆分流量大小进行预测,最终为交通信号灯的智能控制提供决策依据。本专利技术的目的是通过以下技术方案来实现的,一种基于RFID数据的路口车辆分流量预测方法,主要步骤为:步骤1、收集车辆RFID数据;步骤2、数据预处理,去除重复和奇异数据;步骤3、以预处理后的数据为基础,基于时间相位划分方法判断路口车辆转向,并计算每个信号周期内路口各个方向车流量大小;步骤4、根据步骤3所计算得到的各个方向车流量大小再结合公有数据构建特征集,该特征集的每条特征数据最后一个字段为标记字段,标识不同时间段下每个转向的车流量大小;步骤5、以步骤4所得数据作为训练集,使用机器学习算法训练一个预测路口各个方向车流量大小的预测模型;步骤6、对于一个新的信号周期,根据步骤4构建特征集并将新构建的特征集作为预测模型的输入,预测模型输出即为预测信号周期内对应方向的车辆分流量大小。进一步,车辆转向识别方法具体步骤为:步骤a、规定每个信号周期为T,信号周期为信号灯某个方向上的绿灯开始计时到下一次绿灯开始之间的时间间隔;步骤b、规定在每个信号周期内红绿灯时长会被划分为多个相位,表示为p1,p2…pn;步骤c、每个路口按方向划分东、西、南、北,每个方向上有一个RFID采集点分别用RE、RW、RS、RN表示,通过在特定的相位时间段内各RFID采集点获取到的车辆信息可以判断其转向;步骤d、根据步骤c识别车辆转向,并按每个信号周期T统计各个方向上的车流量大小。进一步,步骤4中,特征集的构建过程为:步骤4.1、从时间序列出发充分考虑历史数据对预测周期的影响,ft+1表示预测周期t+1某转向车流量大小,考虑预测周期前五个信号周期车流量大小:ft、ft-1、ft-2、ft-3、ft-4;考虑预测结果与前一天相同时间段之间的关联性,选取前一天预测周期和预测周期前五个周期车流量大小:考虑预测结果与一周前相同时间段之间的关联性,选取一周前预测周期和预测周期前五个周期车流量大小:步骤4.2、考虑时间因素、天气因素、工作日因素和气温因素对预测结果的影响构建特征time、min_temp、max_temp、weather、weekday、month,分别代表预测周期小时数、预测日最低气温、预测日最高气温、预测日天气、预测工作日或周末和预测日月份;步骤4.3、结合步骤4.1和步骤4.2所选取的特征然后加上方向标识最终特征集包含24个特征。由于采用以上技术方案,本专利技术具有以下优点:1.使用车辆的RFID数据,信息获取准确简单。2.通过先进的数据挖掘技术较为准确的预测路口转向车流量的大小。附图说明为了使本专利技术的目的、技术方案和优点更加清楚,下面将结合附图对本专利技术作进一步的详细描述,其中:图1是路口车辆分流量预测方法整体流程图。具体实施方式下面将结合附图,对本专利技术的优选实施例进行详细的描述。图1是本专利技术关于路口车辆分流量预测方法整体流程图。所述方法包括:步骤1、收集车辆RFID数据,数据主要包括RFID采集点编号、车辆唯一标识、RFID采集点位置信息和RFID数据采集时间戳。步骤2、RFID数据清洗,去除重复和奇异数据。将每个RFID采集点下同一辆车的数据按时间序列排序,设定一个较小的时间阈值,当相邻数据时间间隔小于阈值时删除重复数据保留第一条数据。去奇异操作清除明显异常数据。步骤3、以预处理后的数据为基础,基于时间相位划分方法判断路口车辆转向,并计算每个信号周期内路口各个方向车流量大小。该方法具体计算步骤为:a、规定每个信号周期为T,即信号灯某个方向上的绿灯开始计时到下一次绿灯开始之间的时间间隔。b、规定在每个信号周期内红绿灯时长会被划分为多个相位,表示为p1,p2…pn(一般n=2、4、8)。其中最常见的为四相位(n=4)划分,如p1为东西直行加右转,p2为南北直行加右转,p3为东西向左转,p4为南北向左转。每个相位的通行时间不重叠。c、每个路口按方向划分(通常为四方向)东(E),西(W),南(S),北(N)。每个方向上有一个RFID采集点分别用RE、RW、RS、RN表示,因为多个相位之间的通行时间不重叠,所以在特定的相位时间段内各RFID采集点获取到的车辆信息可以判断其转向。例如在p1相位规定东西直行加右转方向车辆通行,于是在p1相位的通行时间段内RE获取的车辆信息为由西向东直行的车辆,用W-E表示。又如p4相位规定南北方向左转方向车辆通行,于是在p4相位的通行时间段内RE获取的车辆信息为由北向东的车辆,用N-E表示。d、根据步骤c识别车辆转向,并按每个信号周期T统计各个方向上的车流量大小。步骤4、根据步骤3所计算得到的各个方向车流量再结合公有数据构建特征集,每条特征数据最后一个字段为标记字段,标识不同时间段下每个转向的车流量大小。公有数据主要包括天气、温度、日期、是否周末等。特征集的构建过程为:a、从时间序列出发充分考虑历史数据对预测周期的影响。ft+1表示预测周期t+1某转向车流量大小,考虑预测周期前五个信号周期车流量大小:ft、ft-1、ft-2、ft-3、ft-4。考虑预测结果与前一天相同时间段之间的关联性选取前一天预测周期和预测周期前五个周期车流量大小:考虑预测结果与一周前相同时间段之间的关联性选取一周前预测周期和预测周期前五个周期车流量大小:b、考虑时间因素、天气因素、工作日因素和气温因素对预测结果的影响构建特征time、min_temp、max_temp、weather、weekday、month。分别代表预测周期小时数、预测日最低气温、预测日最高气温、预测日天气、预测工作日或周末和预测日月份。c、结合步骤a和步骤b所选取的特征然后,加上方向标识最终特征集包含24个特征。步骤5、以步骤4所得数据作为训练集,主要数据来源是车辆RFID和能够公开获取的天气、温度和日期等数据。使用机器学习算法训练一个可以预测路口各个方向车流量大小的预测模型。步骤6、对于一个新的信号周期可以根据步骤4构建特征并将新构建的特征集作为预测模型的输入,预测模型输出即为预测信号周期内对应方向的车辆分流量大小。本专利技术提供的一种基于RFID数据的路口车辆分流量预测方法,主要利用路口车辆的RFID数据通过数据预处理、特征集的构建等过程然后再结合相应的预测模型实现对新的交通信号周期内路口车辆分流量的预测。目的是为交通信号灯的智能控制提供决策依据。最后说明的是,以上优选实施例仅用以说明本专利技术的技术方本文档来自技高网...
【技术保护点】
一种基于RFID数据的路口车辆分流量预测方法,其特征在于:主要步骤为:步骤1、收集车辆RFID数据;步骤2、数据预处理,去除重复和奇异数据;步骤3、以预处理后的数据为基础,基于时间相位划分方法判断路口车辆转向,并计算每个信号周期内路口各个方向车流量大小;步骤4、根据步骤3所计算得到的各个方向车流量大小再结合公有数据构建特征集,该特征集的每条特征数据最后一个字段为标记字段,标识不同时间段下每个转向的车流量大小;步骤5、以步骤4所得数据作为训练集,使用机器学习算法训练一个预测路口各个方向车流量大小的预测模型;步骤6、对于一个新的信号周期,根据步骤4构建特征集并将新构建的特征集作为预测模型的输入,预测模型输出即为预测信号周期内对应方向的车辆分流量大小。
【技术特征摘要】
1.一种基于RFID数据的路口车辆分流量预测方法,其特征在于:主要步骤为:步骤1、收集车辆RFID数据;步骤2、数据预处理,去除重复和奇异数据;步骤3、以预处理后的数据为基础,基于时间相位划分方法判断路口车辆转向,并计算每个信号周期内路口各个方向车流量大小;步骤4、根据步骤3所计算得到的各个方向车流量大小再结合公有数据构建特征集,该特征集的每条特征数据最后一个字段为标记字段,标识不同时间段下每个转向的车流量大小;步骤5、以步骤4所得数据作为训练集,使用机器学习算法训练一个预测路口各个方向车流量大小的预测模型;步骤6、对于一个新的信号周期,根据步骤4构建特征集并将新构建的特征集作为预测模型的输入,预测模型输出即为预测信号周期内对应方向的车辆分流量大小。2.根据权利要求1所述的一种基于RFID数据的路口车辆分流量预测方法,其特征在于:车辆转向识别方法具体步骤为:步骤a、规定每个信号周期为T,信号周期为信号灯某个方向上的绿灯开始计时到下一次绿灯开始之间的时间间隔;步骤b、规定在每个信号周期内红绿灯时长会被划分为多个相位,表示为p1,p2…pn;步骤c、每个路口按方向划分东、西、南、北,每个方向上有一个RFID采集点分别...
【专利技术属性】
技术研发人员:许国良,罗林,雒江涛,
申请(专利权)人:重庆邮电大学,
类型:发明
国别省市:重庆;50
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。