The embodiment of the invention provides a method and a device for monitoring the invasion of the Internet of things. The method includes obtaining sensing layer nodes by sensing equipment collected data in the Internet of things; to obtain based on the data as the training data and the use of TrAdaBoost method, establish networking intrusion classification model, in which the network intrusion classification including intrusion behavior and normal behavior; obtain the perceptual layer use again sensing equipment to collect test data in the complex network, and using the Internet intrusion classification model to classify the judgment; if the test data set is divided into intrusion, intercept and alarm processing, in order to solve the monitoring in perceptionlayer appear intrusion behavior problems.
【技术实现步骤摘要】
本专利技术涉及物联网安全领域,具体而言,涉及一种物联网入侵监测方法及装置。
技术介绍
作为新信息时代在通信网络的重要组成部分,物联网通信技术不仅能够将机器与机器联系起来,实现物理世界感知新型的传输与共享,而且还能够将机器与人联系起来,实现更为广泛和深入的信息交互,成为连接人类主观信息服务需求与客观世界各种感知服务新型的桥梁。物联网感知层的安全是物联网真正实用化的前提和保障。物联网感知层面临的安全威胁主要有物理攻击、传感设备替换危险、假冒传感节点威胁等。物联网感知层的监测环境复杂多变,环境的变化必然会引起感知数据的变化,也会对异常监测的需求产生影响。目前大多数有关物联网感知层入侵监测的方案只是提供一个框架,对于具体如何实现监测还没有确定。
技术实现思路
有鉴于此,本专利技术实施例的目的在于提供一种物联网入侵监测方法及装置,以此解决监测在物联网感知层出现入侵行为的问题。第一方面,本专利技术实施例提供了一种物联网入侵监测方法,所述方法包括:获取在物联网感知层节点利用感知设备采集到的数据;基于所述获取到的数据作为训练数据以及利用TrAdaBoost方法,建立物联网入侵分类模型,其中,所述物联网入侵分类包括入侵行为集和正常行为集;获取在物联网感知层节点再次利用感知设备采集到的测试数据,并采用所述物联网入侵分类模型进行分类判断;若所述测试数据分为入侵行为集,则进行拦截以及报警处理。第二方面,本专利技术实施例提供了一种物联网入侵监测装置,所述装置包括:第一数据获取单元,用于获取在物联网感知层节点利用感知设备采集到的数据;物联网入侵分类模型建立单元,用于基于所述获取到的数据 ...
【技术保护点】
一种物联网入侵监测方法,其特征在于,所述方法包括:获取在物联网感知层节点利用感知设备采集到的数据;基于所述获取到的数据作为训练数据以及利用TrAdaBoost方法,建立物联网入侵分类模型,其中,所述物联网入侵分类包括入侵行为集和正常行为集;获取在物联网感知层节点再次利用感知设备采集到的测试数据,并采用所述物联网入侵分类模型进行分类判断;若所述测试数据分为入侵行为集,则进行拦截以及报警处理。
【技术特征摘要】
1.一种物联网入侵监测方法,其特征在于,所述方法包括:获取在物联网感知层节点利用感知设备采集到的数据;基于所述获取到的数据作为训练数据以及利用TrAdaBoost方法,建立物联网入侵分类模型,其中,所述物联网入侵分类包括入侵行为集和正常行为集;获取在物联网感知层节点再次利用感知设备采集到的测试数据,并采用所述物联网入侵分类模型进行分类判断;若所述测试数据分为入侵行为集,则进行拦截以及报警处理。2.根据权利要求1所述的方法,其特征在于,所述基于所述获取到的数据作为训练数据以及利用TrAdaBoost方法,建立物联网入侵分类模型,其中,所述物联网入侵分类包括入侵行为集和正常行为集,包括:将所述训练数据划分为m个视角,利用所述TrAdaBoost方法分别对所述m个视角进行分类训练,获得m个弱分类器以及所述m个弱分类器的权重;基于所述m个弱分类器、所述m个弱分类器的权重以及加权求和方法,获得加权所述m个弱分类器后的强分类器并获得物联网入侵分类模型,其中,所述物联网入侵分类包括入侵行为集和正常行为集。3.根据权利要求2所述的方法,其特征在于,所述m个视角包括第一视角,所述m个弱分类器包括所述第一视角对应的第一弱分类器,所述将所述训练数据划分为m个视角,利用所述TrAdaBoost方法分别对m个视角进行分类训练,获得m个弱分类器以及所述m个弱分类器的权重,包括:初始化所述第一视角的样本数据赋予同样的权重以及预设的第一迭代次数;基于所述TrAdaBoost方法中预设的训练规则,训练所述初始化后的样本数据,直到满足所述预设的第一迭代次数,获得所述第一视角对应的第一弱分类器以及所述第一弱分类器的权重。4.根据权利要求3所述的方法,其特征在于,所述m个视角包括第二视角,所述m个弱分类器包括所述第二视角对应的第一弱分类器,所述将所述训练数据划分为m个视角,利用所述TrAdaBoost方法分别对m个视角进行分类训练,获得m个弱分类器以及所述m个弱分类器的权重,包括:将所述第一弱分类器的样本数据的权重赋予给所述第二视角的样本数据以及预设的第二迭代次数;基于TrAdaBoost方法中预设的训练规则,训练所述权重赋予后的所述第二视角的样本数据,直到满足所述预设的第二迭代次数,获得...
【专利技术属性】
技术研发人员:郭燕慧,孙博文,李祺,
申请(专利权)人:北京邮电大学,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。