The invention relates to a method for establishing an object recognition model and an object recognition method. Among them, including the method for establishing the object recognition model: to obtain the input image; extracting depth characteristics of the input image; random structure model of input image objects in the structured modeling based on the object are structured expression; expression object structured based on gradient backpropagation learning structure parameters, solving the gradient, and the use of random the gradient descent algorithm for training and learning, the object recognition model. The embodiment of the invention solves the technical problems of the complex elastic deformation, the posture change and the visual change of the object in the visual task. The embodiment of the invention can be applied to many fields such as object classification, object detection, face recognition, etc..
【技术实现步骤摘要】
本专利技术实施例涉及模式识别、机器学习及计算机视觉
,具体涉及一种物体识别模型的建立方法及物体识别方法。
技术介绍
进入二十一世纪以来,随着互联网技术的快速发展,以及手机、相机、个人电脑的普及,图像数据呈现出爆炸式增长。Google+推出100天就上传了34亿张图片,而著名的社交网站Facebook的图片数据更是超过了100亿。另一方面,随着建设平安城市的需要,监控摄像头的数量越来越多,据不完全统计,仅北京市的监控摄像头数量就超过了40万个,而全国的监控摄像头数量更是达到2000多万,并仍以每年20%的数量增长。如此大规模的数据远远超出了人类的分析处理能力。因此,智能地处理这些图像和视频数据成为迫切需要。在这种背景下,如何利用计算机视觉技术自动、智能地分析理解图像数据受到人们的广泛关注。物体识别是计算机视觉任务中的经典问题,同时也是解决很多高层视觉任务的核心问题,物体识别的研究为高层视觉任务(例如:行为识别、场景理解等)的解决奠定了基础。它在人们的日常生活中以及工业生产中有着广泛的应用,如:智能视频监控、汽车辅助驾驶、无人车驾驶、生物信息身份认证、智能交通、互联网图像检索、虚拟现实以及人机交互等。近几十年来,随着大量统计机器学习算法在人工智能和计算机视觉领域的成功应用,计算机视觉技术有了突飞猛进的进步。尤其是近年来,大数据时代的到来为视觉任务提供了更加丰富的海量图像数据,高性能计算设备的发展给大数据计算提供了硬件支持,大量成功的计算机视觉算法不断地涌现出来。尽管如此,计算机视觉技术与人的视觉认知能力仍存在很大的差距,尤其是在物体识别任务中仍存在很大 ...
【技术保护点】
一种物体识别模型的建立方法,其特征在于,所述方法包括:获取输入图像;提取所述输入图像的深度特征;基于随机场结构模型对所述输入图像中的物体进行结构化建模,得到所述物体的结构化表达;基于所述物体的所述结构化表达,利用梯度反向传播算法学习结构参数,求解梯度,并利用随机梯度下降算法进行学习和训练,得到所述物体识别模型。
【技术特征摘要】
1.一种物体识别模型的建立方法,其特征在于,所述方法包括:获取输入图像;提取所述输入图像的深度特征;基于随机场结构模型对所述输入图像中的物体进行结构化建模,得到所述物体的结构化表达;基于所述物体的所述结构化表达,利用梯度反向传播算法学习结构参数,求解梯度,并利用随机梯度下降算法进行学习和训练,得到所述物体识别模型。2.根据权利要求1所述的方法,其特征在于,所述提取所述输入图像的深度特征具体包括:利用卷积神经网络模型的卷积层和池化层,提取所述输入图像的所述深度特征。3.根据权利要求1所述的方法,其特征在于,所述基于随机场结构模型对所述输入图像中的物体进行结构化建模,得到所述物体的结构化表达,具体包括:对所述输入图像的深度特征进行部件卷积操作,得到所述输入图像中所述物体各个部件的表观表达;对所述物体各个部件的表观表达进行结构池化操作,确定所述物体各部件的最优位置;基于所述物体各部件的最优位置,利用平均场算法对随机场结构模型进行推理,获得所述物体的所述结构化表达。4.根据权利要求3所述的方法,其特征在于,所述对所述输入图像的深度特征进行部件卷积操作,得到所述输入图像中所述物体各个部件的表观表达,具体包括:根据以下公式将所述物体各部件的部件滤波器在所述部件滤波器变形区域内进行卷积,从而得到所述输入图像中所述物体各个部件的所述表观表达:zi(di)=Wi·φ(H,pi,di)其中,所述i表示所述物体部件个数;所述H表示结构网络层的输入特征;所述Wi表示第i个部件滤波器的权重;所述pi表示所述第i个部件滤波器的初始位置;所述di表示所述第i个部件滤波器的变形量;所述φ(H,pi,di)表示在pi+di处的输入响应;所述zi(di)表示所述部件在响应位置的分数。5.根据权利要求4所述的方法,其特征在于,所述对所述物体各个部件的表观表达进行结构池化操作,确定所述物体各部件的最优位置,具体包括:根据以下公式确定所述物体各部件之间的变形结构损失:其中,所述u(di,dj)表示第i和第j个部件之间的连接权重;所述fi表示所述第i个部件的特征矢量;所述fj表示所述第j个部件的特征矢量;所述k(m)(·)表示作用在特征空间上的高斯函数;所述M表示所...
【专利技术属性】
技术研发人员:黄凯奇,刘康伟,
申请(专利权)人:中国科学院自动化研究所,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。