本发明专利技术公开了一种用于扩展目标跟踪的形态估计性能评估方法,属于传感器与信息信号处理领域。本发明专利技术包括:根据扩展目标所具有的复杂扩展形态特征,特别针对基于支撑函数所建立起的扩展目标模型,充分考虑其所具有的不同形态参数描述方式,将豪斯多夫距离离散采样并进行蒙特卡洛平均以衡量真实目标形态与估计出目标形态的整体匹配程度,从而达到扩展目标形态估计性能评估的目的。本发明专利技术的方法能够评估扩展目标跟踪算法中形态估计性能的优劣,易于工程实现,具有较强的应用价值和推广前景。
【技术实现步骤摘要】
本专利技术属于传感器与信息信号处理领域,涉及到扩展目标估计出的形态与真实形态之间的匹配问题,即一种用于扩展目标跟踪系统中的形态估计性能评估方法,可有效用来评价扩展目标跟踪算法的优劣。
技术介绍
现代高精度传感器分辨技术的不断发展,使得其不但能够提供运动状态量测,还能提供目标的宽度、大小等部分形态特征信息方面的量测。在这种情况下,运动体一般被认为是具有某种形态的扩展目标,不再被视作点目标。为了验证某种跟踪算法的有效性,往往需要与其他算法进行对比并评估其估计性能,而估计性能的好坏则是通过计算真实目标状态和估计出目标状态之间的估计误差大小来体现。以点目标跟踪为例,均方根误差可以作为一种度量准则来对目标运动状态估计性能进行评估。但是对于形态的估计性能评估,目标形态参数的均方误差并不能客观衡量扩展目标估计出的形态与真实形态的相似程度。这是因为对于具有不同形态的扩展目标,使用不同的形态参数描述形式会产生不同的均方根误差结果。因此,为了对扩展目标跟踪算法中形态估计性能进行客观评价,专利技术人将扩展目标的形态估计评估视作目标真实形态与所估计出目标形态的整体匹配问题。在实现本专利技术的过程中,特别针对基于支撑函数所建立起的扩展目标模型,充分考虑到其所具有的不同形态参数的描述方式,将豪斯多夫距离离散采样并进行蒙特卡洛平均以客观反映真实目标形态与估计出目标形态的整体匹配程度,从而达到扩展目标形态估计性能评估的目的。
技术实现思路
本专利技术的目的是提供一种用于扩展目标跟踪的形态估计性能评估方法,所述的扩展目标形态估计性能评估方法,不但能够客观反映扩展目标所估计出形态与真实形态之间相似程度,而且可以根据专利技术中提出的豪斯多夫距离离散采样后得到蒙特卡洛平均结果来有效衡量扩展目标跟踪算法的优劣。本专利技术所采用的技术方案是:一种用于扩展目标跟踪的形态估计性能评估方法,包括以下步骤:步骤一、假定扩展目标,根据扩展目标所具有的复杂扩展形态特征,其形态描述采用支撑函数的数学形式来描述,,其中n为扩展目标形态分解的子目标形态的个数,沿视线角方向上子目标的支撑函数表示为,,;则扩展目标的支撑函数表示为,矩阵的分量为扩展目标的扩展形态参数的分量,为向量转置;步骤二、假定为利用扩展目标跟踪算法估计出的目标形态参数,则估计出目标形态的支撑函数的描述形式为;步骤三、根据步骤二所估计出的目标形态和步骤一计算的真实目标形态之间离散采样的豪斯多夫距离来评价该复杂扩展目标的估计性能,其中,,,,,a为目标形态中根据离散采样的某一点,表示为点a和目标之间欧几里得距离;步骤四、采用公式对离散采样豪斯多夫距离进行蒙特卡洛平均,根据的计算结果来对目标形态的估计性能进行评估,其中,,为蒙特卡洛仿真次数,表示第次蒙特卡洛平均得到的离散采样豪斯多夫距离。本专利技术的有益效果:采用本专利技术,不但能够客观反应扩展目标所估计出形态与真实形态之间的相似程度以评估其估计性能,而且能够有效衡量扩展目标跟踪算法的优劣,易于工程实现,具有较强的应用价值和推广前景。附图说明图1为本专利技术实施方式的流程图;图2为扩展目标跟踪轨迹图;图3为扩展目标跟踪轨迹局部方法图;图4为不同量测噪声影响下的扩展目标形态估计性能评估结果图。具体实施方式为使本专利技术的上述目的、特征和优点能够更加明显易懂,下面结合附图1和具体实施方式对本专利技术作进一步详细说明。一种用于扩展目标跟踪的形态估计性能评估方法,包括以下步骤:步骤一、假定扩展目标,根据扩展目标所具有的复杂扩展形态特征,其形态描述采用支撑函数的数学形式来描述,,其中n为扩展目标形态分解的子目标形态的个数,沿视线角方向上子目标的支撑函数表示为,,;则扩展目标的支撑函数表示为,矩阵的分量为扩展目标的扩展形态参数的分量,为向量转置;步骤二、假定为利用扩展目标跟踪算法估计出的目标形态参数,则估计出目标形态的支撑函数的描述形式为;步骤三、根据步骤二所估计出的目标形态和步骤一计算的真实目标形态之间离散采样的豪斯多夫距离来评价该复杂扩展目标的估计性能,其中,,,,,a为目标形态中根据离散采样的某一点,表示为点a和目标之间欧几里得距离;步骤四、采用公式对离散采样豪斯多夫距离进行蒙特卡洛平均,根据的计算结果来对目标形态的估计性能进行评估,其中,,为蒙特卡洛仿真次数,表示第次蒙特卡洛平均得到的离散采样豪斯多夫距离。实施例1以一个复杂扩展目标为例,其目标形态可分解成两个椭圆子目标形态。那么复杂目标的支撑函数为两个椭圆子目标支撑函数的简单加和:其中沿视线角方向上两个椭圆子目标的支撑函数表示为相应的,复杂扩展目标形态的支撑函数表示形式为:那么矩阵的分量可以被视为是复杂目标的扩展形态参数。如果为利用扩展目标跟踪算法估计出的目标形态参数,那么估计出目标形态的支撑函数描述形式为:基于支撑函数的复杂扩展目标估计性能可以通过所估计出的目标形态和真实形态之间离散采样的豪斯多夫距离来评价,这是因为是一个连续集无法直接使用,如果根据其进行性能评估显然与实际情况不符。那么借助角度均匀采样的思想,将连续集均匀采样成离散集,其中为离散采样数目。因此用来评估扩展目标形态估计性能的离散采样的豪斯多夫距离为,其中为目标形态中根据离散采用的某一点,那么表示为点和目标之间欧几里得距离。因此使用离散采样的豪斯多夫距离来对估计出的目标形态与真实目标形态进行相似程度对比以评估其估计性能。一般地,验证扩展目标跟踪算法的有效性,通常采用蒙特卡洛仿真的方法。那么为了对估计出的形态性能进行综合评价,需要对离散采样豪斯多夫距离进行蒙特卡洛平均,即,其中为蒙特卡洛仿真次数,表示第次蒙特卡洛平均得到的离散采样豪斯多夫距离。显然,的大小反映了所估计出的目标形态与真实目标形态的整体匹配程度,从而根据其计算结果来对目标形态的估计性能进行评估。本专利技术用于扩展目标跟踪算法中形态估计性能评估的效果可以通过以下仿真实验进一步说明:1.仿真场景及参数考虑如下的仿真场景,一个具有复杂形态的扩展目标沿着附图2中所示的轨迹作近似匀速直线运动,为其目标初始运动状态,高分辨率雷达观测点位于笛卡尔坐标平面的原点,采样周期。2.仿真内容及结果分析附图2给出了此场景中的复杂扩展目标跟踪轨迹,其中图3是图2的局部放大图。为了测试本专利技术中离散采样豪斯多夫距离能否对复杂形态扩展目标的形态估计性能进行有效评估,在此场景中通过针对高量测噪声和低量测噪声不同情况影响下的扩展目标跟踪进行了100次蒙特卡洛仿真。显然,如图4所示,蒙特卡洛仿真平均计算所得到的离散采样豪斯多夫距离越小,所估计出的形态就越接近真实形态,从而达到扩展目标跟踪中形态估计性能评估的目的。总的来说,本专利技术中的用于扩展目标跟踪的形态估计性能评估方法,能够通过比较目标真实形态和估计形态二者之间的离散采样豪斯多夫距离的蒙特卡洛平均值以有效衡量扩展目标跟踪算法的优劣。本文档来自技高网...
【技术保护点】
一种用于扩展目标跟踪的形态估计性能评估方法,其特征在于:包括以下步骤:步骤一、假定扩展目标,根据扩展目标所具有的复杂扩展形态特征,其形态描述采用支撑函数的数学形式来描述,,其中n为扩展目标形态分解的子目标形态的个数,沿视线角方向上子目标的支撑函数表示为,,;则扩展目标的支撑函数表示为,矩阵的分量为扩展目标的扩展形态参数的分量,为向量转置;步骤二、假定为利用扩展目标跟踪算法估计出的目标形态参数,则估计出目标形态的支撑函数的描述形式为;步骤三、根据步骤二所估计出的目标形态和步骤一计算的真实目标形态之间离散采样的豪斯多夫距离来评价该复杂扩展目标的估计性能,其中,,,,, a为目标形态中根据离散采样的某一点,表示为点a和目标之间欧几里得距离;步骤四、采用公式对离散采样豪斯多夫距离进行蒙特卡洛平均,根据的计算结果来对目标形态的估计性能进行评估,其中,,为蒙特卡洛仿真次数,表示第次蒙特卡洛平均得到的离散采样豪斯多夫距离。
【技术特征摘要】
1.一种用于扩展目标跟踪的形态估计性能评估方法,其特征在于:包括以下步骤:步骤一、假定扩展目标,根据扩展目标所具有的复杂扩展形态特征,其形态描述采用支撑函数的数学形式来描述,,其中n为扩展目标形态分解的子目标形态的个数,沿视线角方向上子目标的支撑函数表示为,,;则扩展目标的支撑函数表示为,矩阵的分量为扩展目标的扩展形态参数的分量,为向量转置;步骤二、假定为利用扩展目标跟踪算法估计出的目标形态参数,则估计出目...
【专利技术属性】
技术研发人员:孙力帆,张森,冀保峰,普杰信,
申请(专利权)人:河南科技大学,
类型:发明
国别省市:河南;41
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。