本发明专利技术公开了一种智能车载系统的实现方法,具体是指一种基于adas和obd数据用户分类方法。本发明专利技术通过在车辆上安装adas设备、obd模块、Gps设备,用于采集数据;以及通信模块,用于实现和互联网通信;通过把上述设备采集的信息用科学运算方法进行运算,从而判断驾驶人员的风险因素及概率,可以进行必工的提示等。本发明专利技术的优点是可以为保险公司等机构准确判断驾驶人员的出险概率,正确引导驾驶人员的规范行车等良好习惯。
【技术实现步骤摘要】
本专利技术涉及一种智能车载系统的实现方法,具体是指一种基于adas和obd数据用户分类方法。
技术介绍
先进驾驶辅助系统(AdvancedDriverAssistantSystem),简称ADAS,是利用安装于车上的各式各样的传感器,在第一时间收集车内外的环境数据,进行静、动态物体的辨识、侦测与追踪等技术上的处理,从而能够让驾驶者在最快的时间察觉可能发生的危险,以引起注意和提高安全性的主动安全技术。ADAS采用的传感器主要有摄像头、雷达、激光和超声波等,可以探测光、热、压力或其它用于监测汽车状态的变量,通常位于车辆的前后保险杠、侧视镜、驾驶杆内部或者挡风玻璃上。早期的ADAS技术主要以被动式报警为主,当车辆检测到潜在危险时,会发出警报提醒驾车者注意异常的车辆或道路情况。那狗设备是杭州好好开车科技有限公司开发的一款汽车安全云终端设备。包含了一块快速处理信息的cpu,一路专业的用于ADAS信息处理的摄像头,一路记录行车过程的摄像头,以及通信模块等。传感器模块采用了mpu6050芯片,该芯片用于采集加速度和陀螺仪等传感数据。Obd设备和那狗通过通信模块进行数据传输。Obd技术:On-BoardDiagnostic车载诊断系统。这个系统随时监控发动机的运行状况和尾气后处理系统的工作状态,当系统出现故障时,故障信息存入obd存储器,通过标准的诊断仪器和诊断接口可以以故障码的形式读取相关信息。根据故障码的提示,维修人员能迅速准确地确定故障的性质和部位。Obd能够读取到汽车的信息如发动机转速、车辆速度、油耗等信息。由于驾驶人员的各种不同习惯会对影响驾驶行为的不同风险,然后对于保险公司等机构无法确定、掌握驾驶人员这种风险,所以,保险公司等也无法准确评估驾驶人员的保险赔率,往往造成一种不公平、不合理的保险费率的出现,即对于有良好加强习惯的驾驶人员无法予以减免保险费用,而出险率高的驾驶人员也不能给予增加保险费率的问题;所以,对于保险公司等机构需要一种可以科学、合理的评估方式,来准确衡量驾驶人员的驾驶习惯,以确定一个合理保险费率。目前,保险公司等还未曾有这种可以合理评估驾驶人员的等级划分,也无法解决保险费率差异化的问题。
技术实现思路
本专利技术针对现有技术的不足,提出一种有效评估驾驶人员驾驶风险的分类方法。本专利技术是通过下述技术方案得以实现的:一种基于adas和obd数据用户分类方法,其特征在于包括下述步骤:(1)在车辆上安装adas设备、obd模块、Gps设备,用于采集数据;以及通信模块,用于实现和互联网通信;其中,Adas设备采集的数据有:前碰撞预警、行人识别、车道偏移预警、自适应巡航、自动紧急刹车、自动泊车、盲点探测、疲劳预警;obd模块采集的数据有:急加速、急减速、急转弯、车速、故障信息;Gps设备采集的数据有:经度、纬度、高度、速度、里程、是否在围栏外;传感数据可以采集到的信息包含但不局限于:道路颠簸、车辆空间运动加速度、角度;(2)对步骤(1)中所采集的数据进行预处理,所述预处理是对具有数据缺失或者数据错误的进行调整或者去除;(3)进行数据的特征提取:Adas数据特征提取:前碰撞预警次数/里程数、和下一个前碰撞预警的时间间隔,行人识别次数/里程数,车道偏移预警次数/里程数,疲劳预警次数/里程数,跟车距离统计,总预警次数/里程数;Obd数据特征提取:急加速次数/里程数,急减速次数/里程数,急转弯次数/里程数,发生三急时候的车速,发生三急时候的车速的最大M个值的均值,速度平均值、速度最大值、是否发生超出预设速度值;M为预设数值;传感数据特征提取:道路颠簸持续时长/里程数,非颠簸道路驾驶平稳度:包括加速度统计量/里程数、陀螺仪统计量/里程数;(4)主成分提取,计算步骤如下:A、步骤(3)中的数据,采集p维随机向量x=(X1,X2,...,Xp)T,n个样品xi=(xi1,xi2,...,xip)T,i=1,2,…,n,T为设定参数;若n>p,构造样本阵,对样本阵元进行如下标准化变换:其中得标准化阵Z;B、对标准化阵Z求相关系数矩阵其中,C、解样本相关矩阵R的特征方程|R-λIp|=0得p个特征根,确定主成分,按确定m值,对每个λj,j=1,2,...,m,解方程组Rb=λjb得单位特征向量D、将标准化后的指标变量转换为主成分U1称为第一主成分,U2称为第二主成分,…,Up称为第p主成分;E、对m个主成分进行综合评价对m个主成分进行加权求和,即得最终评价值,权数为每个主成分的方差贡献率;(5)数据归一化采用min-max标准化;具体为:X=(x-min)/(max-min),序列X包含了若干个x,其中整个序列的最大值为max,最小值为min;(6)SVM分类:SVM分类采用以下4种中的一种:(1)线性核函数K(x,y)=x·y;(2)多项式核函数K(x,y)=[(x·y)+1]d;(3)径向基函数K(x,y)=exp(-|x-y|2/d2)(4)二层神经网络核函数K(x,y)=tanh(a(x·y)+b)。作为优选,上述一种基于adas和obd数据用户分类方法的步骤(6)中的SVM分类采用线性核函数K(x,y)=x·y。本专利技术是采用现有的技术设备,结合科学的计算方法,通过设备对驾驶人员的行为习惯进行划分,从而得出一个合理的评价方法,进而可以分类。在本专利技术中,Obd数据和adas数据形成了用户驾驶行为的基本信息,整理这些信息判断出用户属于哪个类别,为ubi定价提供信息服务。在专利技术中需要的硬件设备:那狗含有通信、传感、adas、obd模块。其中通信模块能够和互联网通信也可以和obd通信。传感模块是包含了MPU6050芯片,实现空间加速度和角度是信息采集。Adas通过一路专业摄像头采集信息,Obd模块是安装在车辆obd接口上的一个硬件,采集车辆信息,包含了车辆速度等信息。Adas可以识别的信息包含但不局限于:前碰撞预警、行人识别、车道偏移预警、自适应巡航、自动紧急刹车、自动泊车、盲点探测、疲劳预警等。Obd可以识别的信息包含但不局限于:急加速、急减速、急转弯、车速、故障信息。Gps可以采集到的信息包含但不局限于:经度、维度、高度、速度、里程、是否在围栏外。传感数据可以采集到的信息包含但不局限于:道路颠簸、车辆空间运动加速度、角度。数据处理端:设计用户分类的类别:熟悉型司机(多年熟练的老司机,驾驶稳定安全系数高)、刚学会开车的司机(驾校刚毕业或者正在训练中的司机、驾驶稳定性差)、危险型司机(驾驶行为激进,出险次数较多的司机)。训练数据从如上的类型司机中选择,采集数据处理。采集行为数据,adas数据、obd数据、gps数据、传感数据。使用服务器中用户N个月的数据做分析。将数据提取出来一个用户的一个行程组为一个数据块,行程相互独立。提取出用户的数据后,需要做预处理,具有数据缺失或者数据错误的进行调整或者去除。Adas数据、obd数据、gps数据、传感数据由于各自的格式和数据量不同,直接作为一个特征向量特征不够显著。特征提取:Adas数据:前碰撞预警次数/里程数、和下一个前碰撞预警的时间间隔、行人识别次数/里程数、车道偏移预警次数/里程数、疲劳预警次数/里程数、跟车距离统计、总预警次数/本文档来自技高网...

【技术保护点】
一种基于adas和obd数据用户分类方法,其特征在于包括下述步骤:(1)在车辆上安装adas设备、obd模块、Gps设备,用于采集数据;以及通信模块,用于实现和互联网通信;其中,Adas设备采集的数据有:前碰撞预警、行人识别、车道偏移预警、自适应巡航、自动紧急刹车、自动泊车、盲点探测、疲劳预警;obd模块采集的数据有:急加速、急减速、急转弯、车速、故障信息;Gps设备采集的数据有:经度、纬度、高度、速度、里程、是否在围栏外;传感数据可以采集到的信息包含但不局限于:道路颠簸、车辆空间运动加速度、角度;(2)对步骤(1)中所采集的数据进行预处理,所述预处理是对具有数据缺失或者数据错误的进行调整或者去除;(3)进行数据的特征提取:Adas数据特征提取:前碰撞预警次数/里程数、和下一个前碰撞预警的时间间隔,行人识别次数/里程数,车道偏移预警次数/里程数,疲劳预警次数/里程数,跟车距离统计,总预警次数/里程数;Obd数据特征提取:急加速次数/里程数,急减速次数/里程数,急转弯次数/里程数,发生三急时候的车速,发生三急时候的车速的最大M个值的均值,速度平均值、速度最大值、是否发生超出预设速度值;M为预设数值;传感数据特征提取:道路颠簸持续时长/里程数,非颠簸道路驾驶平稳度:包括加速度统计量/里程数、陀螺仪统计量/里程数;(4)主成分提取,计算步骤如下:A、步骤(3)中的数据,采集p维随机向量x=(X1,X2,...,Xp)T,n个样品xi=(xi1,xi2,...,xip)T,i=1,2,…,n,T为设定参数;若n>p,构造样本阵,对样本阵元进行如下标准化变换:Zij=xij-x‾jsj,i=1,2,...,n;j=1,2,...,p]]>其中得标准化阵Z;B、对标准化阵Z求相关系数矩阵R=[rij]pxp=ZTZn-1]]>其中,C、解样本相关矩阵R的特征方程|R‑λIp|=0得p个特征根,确定主成分,按确定m值,对每个λj,j=1,2,...,m,解方程组Rb=λjb得单位特征向量D、将标准化后的指标变量转换为主成分Uij=ziTbjo,j=1,2,...,m]]>U1称为第一主成分,U2称为第二主成分,…,Up称为第p主成分;E、对m个主成分进行综合评价对m个主成分进行加权求和,即得最终评价值,权数为每个主成分的方差贡献率;(5)数据归一化采用min‑max标准化;具体为:X=(x‑min)/(max‑min),序列X包含了若干个x,其中整个序列的最大值为max,最小值为min;(6)SVM分类:SVM分类采用以下4种中的一种:(1)线性核函数K(x,y)=x·y;(2)多项式核函数K(x,y)=[(x·y)+1]d;(3)径向基函数K(x,y)=exp(‑|x‑y|2/d2)(4)二层神经网络核函数K(x,y)=tanh(a(x·y)+b)。...
【技术特征摘要】
1.一种基于adas和obd数据用户分类方法,其特征在于包括下述步骤:(1)在车辆上安装adas设备、obd模块、Gps设备,用于采集数据;以及通信模块,用于实现和互联网通信;其中,Adas设备采集的数据有:前碰撞预警、行人识别、车道偏移预警、自适应巡航、自动紧急刹车、自动泊车、盲点探测、疲劳预警;obd模块采集的数据有:急加速、急减速、急转弯、车速、故障信息;Gps设备采集的数据有:经度、纬度、高度、速度、里程、是否在围栏外;传感数据可以采集到的信息包含但不局限于:道路颠簸、车辆空间运动加速度、角度;(2)对步骤(1)中所采集的数据进行预处理,所述预处理是对具有数据缺失或者数据错误的进行调整或者去除;(3)进行数据的特征提取:Adas数据特征提取:前碰撞预警次数/里程数、和下一个前碰撞预警的时间间隔,行人识别次数/里程数,车道偏移预警次数/里程数,疲劳预警次数/里程数,跟车距离统计,总预警次数/里程数;Obd数据特征提取:急加速次数/里程数,急减速次数/里程数,急转弯次数/里程数,发生三急时候的车速,发生三急时候的车速的最大M个值的均值,速度平均值、速度最大值、是否发生超出预设速度值;M为预设数值;传感数据特征提取:道路颠簸持续时长/里程数,非颠簸道路驾驶平稳度:包括加速度统计量/里程数、陀螺仪统计量/里程数;(4)主成分提取,计算步骤如下:A、步骤(3)中的数据,采集p维随机向量x=(X1,X2,...,Xp)T,n个样品xi=(xi1,xi2,....
【专利技术属性】
技术研发人员:陈新平,许恒锦,苏志鹄,褚彭军,
申请(专利权)人:杭州好好开车科技有限公司,
类型:发明
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。