一种设有对称回流孔的外混式自吸离心泵,第一回流孔和第二回流孔分别位于叶轮中截面对称的两侧;蜗壳内腔通过第一回流孔与气液分离室的右侧连通,蜗壳内腔依次通过第二回流孔、泵盖通孔、导流管、排水孔与气液分离室的左侧连通;第一回流孔的右端开口与叶轮中截面之间的距离和第二回流孔的左端开口与叶轮中截面之间的距离相等;第一回流孔的横截面和第二回流孔的横截面的形状均为椭圆形。回流孔位置线的中点位于叶轮中截面所在的平面上,定义中点所在的叶轮中截面的径向为位置径向,第一回流孔横截面的短轴所在方向和第二回流孔横截面的短轴所在方向均与位置径向相平行。
【技术实现步骤摘要】
本技术涉及一种设有对称回流孔的外混式自吸离心泵。
技术介绍
外混式自吸泵属于离心泵的一种,因其良好的自吸性能和工作稳定性,广泛地应用于农业排灌、市政排污、石化冶金和食品化工等领域。与普通离心泵相比,自吸泵泵体上有回流孔结构。回流孔可以保证自吸泵启动时,将液体回流引入蜗壳,使气液得到充分混合,叶轮做功将气液混合排出蜗壳进入气液分离室,气体沿出口管排出,比重较大的液体则下沉到分离室底部,经回流孔再次回到蜗壳,与气体混合,如此循环直到排尽吸入管道内的气体,从而实现自吸。但是,当自吸泵正常工作以后,泵体上回流孔的回流作用严重影响蜗壳内的流动状态,在回流孔的回流与叶轮-蜗壳动静干涉的综合作用下,蜗壳内的流动更为复杂。经回流孔回流到蜗壳内的液体打乱了蜗壳内均匀对称流动结构,使蜗壳断面内产生随时间周期变化的单侧旋涡流动结构,此流动状态不仅造成蜗壳内水力损失增大,还会诱发严重的压力脉动,引发机组振动和噪声。并且由于其单侧回流对叶轮的冲击,叶轮轴向力会显著增大,严重降低轴承的使用寿命,同时使叶轮发生轴向窜动,很有可能造成叶轮口环磨损。
技术实现思路
为解决以上技术缺陷,本技术提出一种设有对称回流孔的外混式自吸离心泵泵体结构,使蜗壳两侧回流,且回流量相同,其作用在于改善蜗壳内的流动状态,使蜗壳内产生相对稳定的对称于叶轮中截面的流动结构,从而降低水力损失,减小压力脉动,并且对称回流引起的叶轮轴向力可相互抵消,大大提高了自吸泵运转的稳定性和可靠性。本技术的技术方案是:一种设有对称回流孔的外混式自吸离心泵,其特征在于:竖直设置的离心泵包括左侧的泵体和右侧的泵盖,泵体设置在水平的泵支架上,泵体上设有进水的吸水室和排水的泵出口,泵体内设有叶轮、蜗壳和气液分离室,且叶轮设置在蜗壳内;泵轴贯穿泵盖,泵轴的左端延伸至蜗壳内,叶轮固定在泵轴的左端上,泵轴的右端与电机的输出轴相连;吸水室与叶轮的入口相连通,叶轮的出口与蜗壳入口相连通,蜗壳的出口与气液分离室相连通,气液分离室通过泵出口向外排液;所述蜗壳上开有第一回流孔和第二回流孔,第一回流孔和第二回流孔分别位于叶轮中截面对称的两侧;蜗壳内腔通过第一回流孔与气液分离室的右侧连通,蜗壳内腔依次通过第二回流孔、泵盖通孔、导流管、排水孔与气液分离室的左侧连通,泵盖通孔开设在泵盖上,排水孔开设在气液分离室上;第一回流孔的右端开口与蜗壳内腔相连,第二回流孔的左端开口与蜗壳内腔相连,且第一回流孔的右端开口与叶轮中截面之间的距离和第二回流孔的左端开口与叶轮中截面之间的距离相等;所述的叶轮中截面指的是叶轮沿轴向的中心处所在的横截面;第一回流孔的横截面和第二回流孔的横截面的形状均为椭圆形;以第一回流孔的右端开口所在的横截面的圆心为第一圆心,以第二回流孔的左端开口所在的横截面的圆心为第二圆心,定义第一圆心和第二圆心的连线为回流孔位置线,则回流孔位置线的中点位于叶轮中截面所在的平面上,定义所述中点所在的叶轮中截面的径向为位置径向,则第一回流孔横截面的短轴所在方向和第二回流孔横截面的短轴所在方向均与所述位置径向相平行;第一回流孔横截面的短轴的长度是长轴长度的40%~60%,第二回流孔的横截面的短轴的长度是长轴长度的40%~60%;第二回流孔的横截面的面积小于第一回流孔的横截面的面积。进一步,第一回流孔的横截面面积第二回流孔的横截面的面积式中n为泵的额定转速,单位为r/min;D2为叶轮4外径,单位为m;Qd为泵的流量,单位为m3/h;d为导流管的直径,单位为m,d=1.2dk1,dk1为第一回流孔9的当量直径;L为导流管10的长度,单位为m;δ为第二回流孔8的轴向长度,单位为m;θ为隔舌沿叶轮旋转方向到回流孔中心的弧度,取值范围3.3~3.8rad;λ为导流管的沿程阻力系数。进一步,所述吸水室沿竖直方向呈S形,吸水室的入口通过吸入管道与外界水源连通,吸水室的出口与叶轮的入口连通,吸水室入口处横截面的中轴线高于蜗壳的出口。进一步,第一回流孔、第二回流孔、泵盖通孔和排水孔的横截面的圆心在同一水平线上,以忽略位能的影响。进一步,所述泵出口的中轴线与蜗壳出口的中轴线相重合。进一步,隔舌与回流孔位置线沿叶轮旋转方向的夹角θ为3.3~3.8rad。本技术的有益效果是:1.本技术两侧对称回流,改变了蜗壳内随时间周期变化的非对称流动结构,两侧对称回流使蜗壳内的流动结构趋于对称,极大程度的改善蜗壳内流动状态,尤其减少了蜗壳内的旋涡流动结构,降低水力损失。2.本技术两侧对称回流,使蜗壳内的压力分布更加均匀,同时改善了蜗壳断面内的随时间周期变化的非对称二次流,可降低压力脉动,提高泵运行稳定性。3.本技术两侧对称回流,冲击叶轮所造成的叶轮轴向力可相互抵消,与现有技术的叶轮轴向力相比大大降低,可减小对轴承和机械密封的影响,增加其使用寿命,同时避免叶轮轴向窜动所带来的危害。4本技术采用导流管的方式引流,使用方便,成本低廉,在达到对称回流目的的同时并没有增加泵体结构的复杂程度,不会增加其铸造难度。5.本技术通过吸水室进口与蜗壳出口保证一定高度差的方式,省去进口单向阀的安装,既降低了成本,又可提高泵的外特性。附图说明图1为本技术的剖视图。图2为图1中B处结构放大示意图。图3为图1中C处结构放大示意图。图4为第一回流孔位置形状示意图。图5为本技术的等轴侧视图。图6a为现有技术的外混式自吸离心泵在回流孔处蜗壳断面流线图;图6b为本技术在第一回流孔和第二回流孔处蜗壳的断面流线图。技术图7为现有技术的外混式自吸离心泵和本技术在回流孔处蜗壳内压力脉动时域对比图,图中的纵轴Cp为压力脉动的无量纲量。图8为现有技术的外混式自吸离心泵和本技术在回流孔处蜗壳内压力脉动频域对比图,图中的纵轴Cp为压力脉动的无量纲量。图9为现有技术的外混式自吸离心泵和本技术的叶轮轴向力对比图。图中:1-泵体,2-吸水室,3-蜗壳,4-叶轮,5-平键,6-叶轮螺母,7-气液分离室(储液室),8-第二回流孔二,9-第一回流孔,10-导流管,11-泵支架,12-排气孔,13-泵出口,14-蜗壳出口,15-泵盖,16-第一螺栓,18-第二螺栓,21-第三螺栓,19-前轴承压盖,20-后轴承压盖,22-泵轴,23-后排轴承,24、25-前排轴承,26-橡胶圈,27-机械密封,28-泵盖通孔,29-连接头,30-紧固螺母,31-垫圈,32-隔舌。具体实施方式如图所示,一种设有对称回流孔的外混式自吸离心泵,竖直设置的离心泵包括左侧的泵体1和右侧的泵盖15,泵体1设置在水平的泵支架11上,泵体1上设有进水的吸水室2和排水的泵出口13,泵体1内设有叶轮4、蜗壳3和气液分离室7,且叶轮4设置在蜗壳3内;泵轴22贯穿泵盖15,泵轴22的左端延伸至蜗壳3内,叶轮4固定在泵轴22的左端上,泵轴22的右端与电机的输出轴相连;吸水室2与叶轮4的入口相连通,叶轮4的出口与蜗壳3入口相连通,蜗壳3的出口与气液分离室7相连通,气液分离室7通过泵出口13向外排液;所述蜗壳3上开有第一回流孔9和第二回流孔8,第一回流孔9和第二回流孔8分别位于叶轮中截面对称的两侧;蜗壳3内腔通过第一回流孔9与气液分离室7的右侧连通,蜗壳3内腔依次通过第二回流孔8、本文档来自技高网...
【技术保护点】
一种设有对称回流孔的外混式自吸离心泵,其特征在于:竖直设置的离心泵包括左侧的泵体和右侧的泵盖,泵体设置在水平的泵支架上,泵体上设有进水的吸水室和排水的泵出口,泵体内设有叶轮、蜗壳和气液分离室,且叶轮设置在蜗壳内;泵轴贯穿泵盖,泵轴的左端延伸至蜗壳内,叶轮固定在泵轴的左端上,泵轴的右端与电机的输出轴相连;吸水室与叶轮的入口相连通,叶轮的出口与蜗壳入口相连通,蜗壳的出口与气液分离室相连通,气液分离室通过泵出口向外排液;所述蜗壳上开有第一回流孔和第二回流孔,第一回流孔和第二回流孔分别位于叶轮中截面对称的两侧;蜗壳内腔通过第一回流孔与气液分离室的右侧连通,蜗壳内腔依次通过第二回流孔、泵盖通孔、导流管、排水孔与气液分离室的左侧连通,泵盖通孔开设在泵盖上,排水孔开设在气液分离室上;第一回流孔的右端开口与蜗壳内腔相连,第二回流孔的左端开口与蜗壳内腔相连,且第一回流孔的右端开口与叶轮中截面之间的距离和第二回流孔的左端开口与叶轮中截面之间的距离相等;所述的叶轮中截面指的是叶轮沿轴向的中心处所在的横截面;第一回流孔的横截面和第二回流孔的横截面的形状均为椭圆形;以第一回流孔的右端开口所在的横截面的圆心为第一圆心,以第二回流孔的左端开口所在的横截面的圆心为第二圆心,定义第一圆心和第二圆心的连线为回流孔位置线,则回流孔位置线的中点位于叶轮中截面所在的平面上,定义所述中点所在的叶轮中截面的径向为位置径向,则第一回流孔横截面的短轴所在方向和第二回流孔横截面的短轴所在方向均与所述位置径向相平行;第一回流孔横截面的短轴的长度是长轴长度的40%~60%,第二回流孔的横截面的短轴的长度是长轴长度的40%~60%;第二回流孔的横截面的面积小于第一回流孔的横截面的面积。...
【技术特征摘要】
1.一种设有对称回流孔的外混式自吸离心泵,其特征在于:竖直设置的离心泵包括左侧的泵体和右侧的泵盖,泵体设置在水平的泵支架上,泵体上设有进水的吸水室和排水的泵出口,泵体内设有叶轮、蜗壳和气液分离室,且叶轮设置在蜗壳内;泵轴贯穿泵盖,泵轴的左端延伸至蜗壳内,叶轮固定在泵轴的左端上,泵轴的右端与电机的输出轴相连;吸水室与叶轮的入口相连通,叶轮的出口与蜗壳入口相连通,蜗壳的出口与气液分离室相连通,气液分离室通过泵出口向外排液;所述蜗壳上开有第一回流孔和第二回流孔,第一回流孔和第二回流孔分别位于叶轮中截面对称的两侧;蜗壳内腔通过第一回流孔与气液分离室的右侧连通,蜗壳内腔依次通过第二回流孔、泵盖通孔、导流管、排水孔与气液分离室的左侧连通,泵盖通孔开设在泵盖上,排水孔开设在气液分离室上;第一回流孔的右端开口与蜗壳内腔相连,第二回流孔的左端开口与蜗壳内腔相连,且第一回流孔的右端开口与叶轮中截面之间的距离和第二回流孔的左端开口与叶轮中截面之间的距离相等;所述的叶轮中截面指的是叶轮沿轴向的中心处所在的横截面;第一回流孔的横截面和第二回流孔的横截面的形状均为椭圆形;以第一回流孔的右端开口所在的横截面的圆心为第一圆心,以第二回流孔的左端开口所在的横截面的圆心为第二圆心,定义第一圆心和第二圆心的连线为回流孔位置线,则回流孔位置线的中点位于叶轮中截面所在的平面上,定义所述中点所在的叶轮中截面的径向为位置径向,则第一回流孔横截面的短轴所在方向和第二回流孔横截面的短轴所...
【专利技术属性】
技术研发人员:周佩剑,吴振兴,牟介刚,张冯烨,谷云庆,吴登昊,
申请(专利权)人:浙江工业大学,
类型:新型
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。