一种基于曲线波动度描述的行人轮廓检测方法技术

技术编号:15059192 阅读:79 留言:0更新日期:2017-04-06 08:57
本发明专利技术提供了一种基于曲线波动度描述的行人轮廓检测方法,包括:S1.获取监控区域的视频流图像作为输入图像;S2.通过Sobel算子对输入图像进行边缘检测,得到边缘图像;S3.根据输入图像,通过背景差分法处理得到差分图像,并对差分图像进行二值化处理,以得到运动目标区域;S4.结合边缘图像和运动目标区域,进行与运算,并提取出公共部分,以得到运动目标轮廓;S5.对运动目标轮廓进行宏形状特征点集进行提取;S6.对由宏形状特征点集中所保留的若干宏形状特征点所形成的曲线进行波动度的匹配检测。通过将宏形状特征点集上基于波动度特征进行匹配检测,有效地根据预先设定的行人轮廓曲线的波动度特征过滤掉大部分非行人的运动目标轮廓,提高了检测效率。

【技术实现步骤摘要】

本专利技术属于视频图像处理及识别
,特别涉及一种基于曲线波动度描述的行人轮廓检测方法
技术介绍
在商场、购物中心、机场、车站等公共场所的管理和决策中,人流量是不可缺少的数据。通过对人流量,即进出人数的统计,可以实时有效的监控、组织公共场所的运营工作,为人们提供更安全的环境和更优质的服务。以商场为例,人流量是非常基础和重要的指标,和商场的销售量密切相关,如果知道比较准确和真实的人流量,可以为销售、服务和物流提供可靠的参考信息。然而,对于行人检测技术而言,行人轮廓的检测是非常重要的一个环节。现有技术中的行人轮廓检测主要是通过单目视觉的方法,利用行人的人体边缘、纹理特征建立模板并综合运用神经网络、支持向量机、级联检测器等机器学习方法。但是,现有技术中对行人轮廓进行检测的过程中对非行人的运动目标轮廓进行检测时容易发生误检。例如,将动物通过监控区域时将该动物错误地认定为行人。因此,有必要对现有技术中的行人轮廓的检测方法予以改进,以克服上述技术缺陷。
技术实现思路
本专利技术的目的在于提供一种基于曲线波动度描述的行人轮廓检测方法,用以有效提高对非设定检测对象进行运动目标进行筛选,提高对行人轮廓检测的检测效率,防止出现误检。为实现上述专利技术目的,本专利技术提供了一种基于曲线波动度描述的行人轮廓检测方法,包括以下步骤:S1、获取监控区域的视频流图像作为输入图像;S2、通过Sobel算子对输入图像进行边缘检测,得到边缘图像;S3、根据输入图像,通过背景差分法处理得到差分图像,并对差分图像进行二值化处理,以得到运动目标区域;S4、结合边缘图像和运动目标区域,进行与运算,并提取出公共部分,以得到运动目标轮廓;S5、对运动目标轮廓进行宏形状特征点集提取;S6、对由宏形状特征点集中所保留的若干宏形状特征点所形成的曲线进行波动度的匹配检测。作为本专利技术的进一步改进,所述步骤S1具体为:通过摄像机获取监控区域的视频流图像作为输入图像,所述监控区域位于摄像机的正下方。作为本专利技术的进一步改进,所述步骤S2具体为:运用3×3的Sobel算子对所述步骤S1所获取的输入图像进行边缘检测,得到边缘图像。作为本专利技术的进一步改进,所述步骤S3中的背景差分法处理具体为:根据步骤S1获取的输入图像,提取出第一帧无运动物体的场景图像作为背景图像,然后利用当前帧图像与背景图像作背景差分运算以得到差分图像,所述背景差分运算的计算公式为:Dk(x,y)=Fk(x,y)-B(x,y);其中,B(x,y)为背景图像中像素点的灰度值,Fk(x,y)为当前帧图像中像素点的灰度值,Dk(x,y)为二者的差分图像。作为本专利技术的进一步改进,所述步骤S5中“宏形状特征点集”具体为:运动目标轮廓上局部范围内最大曲率变化的非噪声像素点集。作为本专利技术的进一步改进,所述步骤S5具体包括以下步骤:S51、提取运动目标轮廓的微形状;S52、根据所述微形状提取运动目标轮廓的宏形状及宏形状基元;S53、提取运动目标轮廓的宏形状特征点集。作为本专利技术的进一步改进,所述步骤S6具体包括以下子步骤:S61、保留宏形状特征点集上最高点和最低点,并将所述最高点与最低点连接为一条直线,然后保留宏形状特征点集在所述直线左右两侧若干曲率极大值宏形状特征点,并按照所保留的若干宏形状特征点的坐标关系连接生成一个凸的封闭的图像轮廓;S62、根据子步骤S61所保留的若干宏形状特征点在x方向的坐标轴上的最大值与最小值的坐标,将运动目标轮廓分为C1(x),C2(x)上下两条曲线;以及,根据子步骤S61所保留的若干宏形状特征点在y方向的坐标轴上的最大值与最小值的坐标,将运动目标轮廓分为C3(x),C4(x)左右两条曲线,并计算运动目标轮廓曲线特征在水平方向以及垂直方向上的波动度分量;S63、计算整个运动目标轮廓曲线的波动度;S64、将待识别的运动目标轮廓曲线的波动度与预先定义的行人轮廓曲线的波动度进行匹配检测。作为本专利技术的进一步改进,所述步骤S62中下曲线C2(x)≤上曲线C1(x),左曲线C3(x)≤右曲线C4(x)。与现有技术相比,本专利技术的有益效果是:在本专利技术中,通过将宏形状特征点集上基于波动度特征进行匹配检测,可有效地根据预先设定的行人轮廓曲线的波动度特征过滤掉大部分非行人的运动目标轮廓,有效地提高了对行人轮廓检测的效率,防止出现误检。附图说明图1为本专利技术一种基于曲线波动度描述的行人轮廓检测方法的流程示意图;图2为图1所示的获取监控区域的视频流图像的工作原理示意图;图3a为Sobel算子计算x方向的梯度值的示意图;图3b为Sobel算子计算y方向的梯度值的示意图;图4为本专利技术所示的输入图像作卷积和运算的示意图;图5为本专利技术所示的多目标宏形状特征点集提取的示意图;图6为提取局部曲率极大值的宏形状特征点集的示意图;图7a为子步骤S62将运动目标轮廓分解为C1(x),C2(x)上下两条曲线的示意图;图7b为子步骤S62将运动目标轮廓分解为C3(x),C4(x)左右两条曲线的示意图;图8为基于波动度对宏形状特征点集所提取到的运动目标轮廓进行波动度匹配检测后所得到的行人轮廓的示意图。具体实施方式下面结合附图所示的各实施方式对本专利技术进行详细说明,但应当说明的是,这些实施方式并非对本专利技术的限制,本领域普通技术人员根据这些实施方式所作的功能、方法、或者结构上的等效变换或替代,均属于本专利技术的保护范围之内。参图1所示,图1为本专利技术一种基于曲线波动度描述的行人轮廓检测方法的流程示意图。在本实施方式中,该行人轮廓检测方法包括以下步骤:S1、获取监控区域的视频流图像作为输入图像。参图2所示,本专利技术一种基于曲线波动度描述的行人轮廓检测方法的流程示意图是基于摄像机垂直拍摄并适用于室外情况和室内情况。在本实施方式中,该步骤S1具体为:通过摄像机10获取监控区域30的视频流图像作为输入图像,所述监控区域30位于摄像机10的正下方。具体的,摄像机10设置在出入口20附近的正上方,行人可沿着箭头201的方向上在出入口20中来回走动。摄像机10所获取的监控区域30可完全覆盖出入口20的全部区域。在本实施方式中,该监控区域30为矩形,当然也可以为正方形或圆形或者其他形状。摄像机10位于监控区域30的中心点301的正上方,由此我们可以推导出,该监控区域30位于摄像机10的正下方。S2、通过Sobel算子对输入图像进行本文档来自技高网...

【技术保护点】
一种基于曲线波动度描述的行人轮廓检测方法,其特征在于,包括以下步骤:S1、获取监控区域的视频流图像作为输入图像;S2、通过Sobel算子对输入图像进行边缘检测,得到边缘图像;S3、根据输入图像,通过背景差分法处理得到差分图像,并对差分图像进行二值化处理,以得到运动目标区域;S4、结合边缘图像和运动目标区域,进行与运算,并提取出公共部分,以得到运动目标轮廓;S5、对运动目标轮廓进行宏形状特征点集进行提取;S6、对由宏形状特征点集中所保留的若干宏形状特征点所形成的曲线进行波动度的匹配检测。

【技术特征摘要】
1.一种基于曲线波动度描述的行人轮廓检测方法,其特征在于,包括以下步骤:
S1、获取监控区域的视频流图像作为输入图像;
S2、通过Sobel算子对输入图像进行边缘检测,得到边缘图像;
S3、根据输入图像,通过背景差分法处理得到差分图像,并对差分图像进行二值化
处理,以得到运动目标区域;
S4、结合边缘图像和运动目标区域,进行与运算,并提取出公共部分,以得到运动
目标轮廓;
S5、对运动目标轮廓进行宏形状特征点集进行提取;
S6、对由宏形状特征点集中所保留的若干宏形状特征点所形成的曲线进行波动度的
匹配检测。
2.根据权利要求1所述的行人轮廓检测方法,其特征在于,所述步骤S1具体为:通
过摄像机获取监控区域的视频流图像作为输入图像,所述监控区域位于摄像机的正下方。
3.根据权利要求1所述的行人轮廓检测方法,其特征在于,所述步骤S2具体为:运
用3×3的Sobel算子对所述步骤S1所获取的输入图像进行边缘检测,得到边缘图像。
4.根据权利要求1所述的行人轮廓检测方法,其特征在于,所述步骤S3中的背景差
分法处理具体为:
根据步骤S1获取的输入图像,提取出第一帧无运动物体的场景图像作为背景图像,
然后利用当前帧图像与背景图像作背景差分运算以得到差分图像,所述背景差分运算的
计算公式为:Dk(x,y)=Fk(x,y)-B(x,y);
其中,B(x,y)为背景图像中像素点的灰度值,Fk(x,y)为当前帧图像中像素点的灰度
值,Dk(x,y)为二者的差分图像。
5.根据权利要求1所述的行人轮廓检测方法,其特...

【专利技术属性】
技术研发人员:吕楠张丽秋
申请(专利权)人:无锡慧眼电子科技有限公司
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1