本发明专利技术公开了一种能够自主作业的隧道地质监控装置,包括普通隧道地质监控装置和安装在隧道地质监控装置上的目标识别装置,识别装置包括建模模块、分段模块、合并模块和滤波模块。本发明专利技术通过在隧道地质监控装置上加装目标识别装置,能够有效增强隧道地质监控装置的环境适应能力,隧道地质监控装置通过目标轮廓识别目标,识别过程中能有效滤除目标轮廓噪声,从而对目标种类做出正确识别。
【技术实现步骤摘要】
本专利技术涉及隧道地质监控领域,具体涉及一种能够自主作业的隧道地质监控装置。
技术介绍
隧道的出现让交通实现了立体化,要想隧道为人类服务,就必须对隧道地质有充分的了解。隧道地质监控装置用来监控隧道的地质,从而为安全使用隧道提供支持,传统的隧道地质监控装置自主性差,不具备识别功能。本装置旨在专利技术一种能够自主进行识别的隧道地质检测装置。目标轮廓识别作为目标识别的重要手段,由于实际应用中受到噪声、量化误差等因素的影响,目标轮廓不可避免地会产生失真,为了准确描述轮廓特征,目标轮廓的滤波平滑处理是十分必要的。目前,学者们提出了许多含噪轮廓的滤波平滑算法,但是普遍存在计算量庞大、降噪效果不理想、容易发生过度滤波导致目标失真等问题。
技术实现思路
针对上述问题,本专利技术提供一种能够自主作业的隧道地质监控装置。本专利技术的目的采用以下技术方案来实现:一种能够自主作业的隧道地质监控装置,包括普通隧道地质监控装置和安装在隧道地质监控装置上的目标识别装置,该隧道地质监控装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓曲线方程的参数,且t∈[0,1];含噪轮廓的弧长参数化方程表示为:GN(t)=G(t)+N1(t)+N2(t)G(t),其中加性噪声部分N1(t)=N1(x1(t),y1(t)),乘性噪声部分N2(t)=N2(x2(t),y2(t));分段模块,用于对轮廓的分段:目标轮廓G(t)和含噪轮廓GN(t)所对应的曲率分别为k(t)和kN(t);选宽度宽度为D的窗函数W(n),对曲率kN(t)进行邻域平均,得到平均曲率k1N(t),同时对窗口内的曲率值排序,选定中值曲率k2N(t),将平均曲率k1N(t)和中值曲率k2N(t)差的绝对值与选定的阈值T1进行比较,根据比较结果决定含噪轮廓曲率k′N(t),即:当|k1N(t)-k2N(t)|>T1时,k′N(t)=k1N(t)否则,k′N(t)=k2N(t);由于曲率值较大的轮廓点通常反映了目标的显著特征,根据k′N(t)将轮廓中所有轮廓点划分为特征点或非特征点,设定可变权值TK,通过判断目标轮廓特征多少,自适应的决定TK,当|k′N(t)|<TK*max|k′N(t)|时,特征函数f(t)=0否则,特征函数f(t)=1。合并模块:用于剔除由于噪声干扰产生的伪特征点,以及对无法形成连续区域的特征点和非特征点进行合并操作,从而得到有效的特征区域与非特征区域:选定一个起始点O,轮廓起始点向两侧延伸合并相邻的点,以该起始点类型作为该区域预设类型,向两侧延伸各S×μ0时停止,其中S为预设的最小长度,为O点处的实时曲率修正系数,代表O点的曲率半径,代表由上述窗函数得到的O点的平均曲率半径,实时曲率修正系数μ0用于根据不同点的曲率不同,自动修正延伸长度,能有效减小合并后的失真现象;分别计算两侧区域内相异点的个数N+1和N-1,若相异点的个数小于设定的该类型相异点最小个数,则该区域与预设类型相同,否则,与预设类型相反;再以两个停止点O+1和点O-1作为起始点重新开始计算,向外侧延伸S×μO+1或S×μO-1时停止,其中μO+1和μO-1分别代表点O+1和点O-1处的实时曲率修正系数,O+1两侧区域内相异点个数为N+2,O-1两侧区域内相异点个数为N-2,根据上述判定条件,依次确定各段轮廓类型,长度不足S的部分根据其与S的比例计算相异点个数,计入相应的特征区域;对相邻的同类型区域进行合并,得到连续的特征区域和非特征区域;滤波模块:乘性噪声由于和图像信号是相关的,随图像信号的变化而变化,采用维纳滤波来进行一级滤除,此时图像信息还包含有残余乘性噪音,通过F滤波器F(x,y)=q×exp(-(x2+y2)/β2进行二级滤除,其中q是将函数归一化的系数,即:∫∫q×exp(-(x2+y2)/β2)dxdy=1,β为图像模板参数;乘性噪声滤除后,含噪目标轮廓的弧长参数化方程表示为GN(t)’=G(t)+N1(t);假设加性噪声为高斯白噪声:xN(t)’=x(t)+g1(t,σ2),yN(t)’=y(t)+g2(t,σ2),其中xN(t)’和yN(t)’分别表示去除乘性噪声后含噪轮廓上各点坐标,g1(t,σ2)和g2(t,σ2)分别是均值为零、方差为σ2的高斯白噪声,用于模拟含噪目标轮廓中的加性噪声;采用函数对含噪轮廓进行平滑,命名为K滤波器,经过轮廓点分类和区域划分,含噪轮廓GN(t)’表示为不同类型轮廓分段的组合:其中表示包含特征区域的轮廓分段,表示包含非特征区域的轮廓分段,根据轮廓特征分布选取K滤波器的参数,同时考虑全局特征和局部特征因素,在特征区域,为了保留细节信息,令在非特征区域,为了提高抑制噪声的效果,令其中σ′为先验估算得到的全局方差,σ1为所选特征区域的先验估算方差,σ0为所选非特征区域的先验估算方差,为所选特征区域的平均实时曲率修正系数,为所选非特征区域的平均实时曲率修正系数;为了达到较好的平滑效果,选取每种类型区域最小长度S的一半作为K滤波器85%置信区间的长度,从而根据两类区域的长度自适应不同参数的K滤波器。本专利技术通过在隧道地质监控装置上加装目标识别装置,能够有效增强隧道地质监控装置的环境适应能力,隧道地质监控装置通过目标轮廓识别目标,识别过程中能有效滤除目标轮廓噪声,从而对目标种类做出正确识别。附图说明利用附图对本专利技术作进一步说明,但附图中的实施例不构成对本专利技术的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。图1是本专利技术的能够自主作业的隧道地质监控装置的结构框图。具体实施方式结合以下实施例对本专利技术作进一步描述。图1是本专利技术的结构框图,其包括:建模模块、分段模块、合并模块、滤波模块。实施例1:一种能够自主作业的隧道地质监控装置,包括普通隧道地质监控装置和安装在隧道地质监控装置上的目标识别装置,该隧道地质监控装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t))本文档来自技高网...
【技术保护点】
一种能够自主作业的隧道地质监控装置,包括普通隧道地质监控装置和安装在隧道地质监控装置上的目标识别装置,该隧道地质监控装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;其中,建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓曲线方程的参数,且t∈[0,1];含噪轮廓的弧长参数化方程表示为:GN(t)=G(t)+N1(t)+N2(t)G(t),其中加性噪声部分N1(t)=N1(x1(t),y1(t)),乘性噪声部分N2(t)=N2(x2(t),y2(t));分段模块,用于对轮廓的分段:目标轮廓G(t)和含噪轮廓GN(t)所对应的曲率分别为k(t)和kN(t);选宽度为D的窗函数W(n),D∈{7,9},对曲率kN(t)进行邻域平均,得到平均曲率k1N(t),同时对窗口内的曲率值排序,选定中值曲率k2N(t),将平均曲率k1N(t)和中值曲率k2N(t)差的绝对值与选定的阈值T1进行比较,根据比较结果决定含噪轮廓曲率k′N(t),T1=0.2,即:当|k1N(t)‑k2N(t)|>T1时,k′N(t)=k1N(t)否则,k′N(t)=k2N(t);由于曲率值较大的轮廓点通常反映了目标的显著特征,根据k′N(t)将轮廓中所有轮廓点划分为特征点或非特征点,设定可变权值TK,通过判断目标轮廓特征多少,自适应的决定TK,当|k′N(t)|<TK*max|k′N(t)|时,特征函数f(t)=0否则,特征函数f(t)=1。...
【技术特征摘要】
1.一种能够自主作业的隧道地质监控装置,包括普通隧道地质监控装置和安装在隧道
地质监控装置上的目标识别装置,该隧道地质监控装置具有很强的环境适应能力,目标识
别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块
和滤波模块;其中,
建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化
方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表...
【专利技术属性】
技术研发人员:林业城,
申请(专利权)人:林业城,
类型:发明
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。