【技术实现步骤摘要】
本申请涉及工业机器人和自动化领域,尤其涉及一种腔体滤波器智能调谐算法及使用该算法的调谐方法。
技术介绍
腔体滤波器是一种无源微波器件,广泛应用于卫星通信、中继通信、雷达、电子对抗及微波测量仪表中,它的使用对于分离频谱信息、提高通信质量、防止信号串扰有着十分重要的作用。在腔体滤波器生产过程中,由于工件存在生产误差,需要调整调谐螺杆的位置,即调整滤波器内的形状,从而使得腔体滤波器符合规格要求——这一工序简称为“滤波器调谐工序”。当前,“滤波器调谐工序”主要采用人工操作,即工人使用螺丝刀,观察矢量网络分析仪显示的散射参数(S参数)波形的变化,根据自己的调谐经验进行判断,逐个手动调谐腔体滤波器上的调谐螺杆,直到矢量网络分析仪显示的S参数波形符合要求。现有的人工调试工序极为复杂:一个腔体滤波器由多路谐振腔构成,每路谐振腔均有不同的波形输出的要求,需要通过几个至十几个调谐杆的高度来调谐。每个调谐杆的高度对整体的波形输出均有不同的影响,调谐杆的高度的不同组合也会影响输出,且所产生影响的规律难以把握。且调试工序还没有一套规范固定的程序,能实现快速的调谐,只能通过人工观察S参数波形,凭借经验,不断循环尝试。据统计,对于一个调谐经验比较丰富的工人,调好一个腔体滤波器产品,也需要花费30到40分钟,调试效率极低。且由于受到前段生产工艺、机械加工精度、手工作业等的影响,同一款腔体滤波器产品也存在个体差异。作为一种十分敏感 ...
【技术保护点】
一种腔体滤波器智能调谐算法,其特征在于,包括:设定目标数据并获取实际数据,所述目标数据包括待调腔体滤波器的调谐指标、腔体滤波器的调谐螺杆分布位置、可调位置限制、调谐螺杆数量,所述实际数据包括当前腔体滤波器的S参数波形;随机采集S参数波形样本数据并获取特征向量;训练获得调谐策略模型,所述调谐策略模型是增强学习模型与神经网络系统的融合,包括状态、环境、奖励、动作和策略,其中状态为当前S参数波形的降维特征,环境为待调滤波器,动作为滤波器调谐过程中调谐螺杆的执行动作,策略为“ε‑贪婪机制”,根据策略挑选动作、执行动作获得新状态和对应新奖励值以不断优化策略,使奖励值达到最佳。
【技术特征摘要】
1.一种腔体滤波器智能调谐算法,其特征在于,包括:
设定目标数据并获取实际数据,所述目标数据包括待调腔体滤波器的调谐
指标、腔体滤波器的调谐螺杆分布位置、可调位置限制、调谐螺杆数量,所述
实际数据包括当前腔体滤波器的S参数波形;
随机采集S参数波形样本数据并获取特征向量;
训练获得调谐策略模型,所述调谐策略模型是增强学习模型与神经网络系
统的融合,包括状态、环境、奖励、动作和策略,其中状态为当前S参数波形
的降维特征,环境为待调滤波器,动作为滤波器调谐过程中调谐螺杆的执行动
作,策略为“ε-贪婪机制”,根据策略挑选动作、执行动作获得新状态和对应新
奖励值以不断优化策略,使奖励值达到最佳。
2.如权利要求1所述的调谐算法,其特征在于,随机采集S参数波形样
本数据并获取特征向量,包括:
随机调整腔体滤波器的调谐螺杆的高度,采集若干状态下S参数波形的原
始样本数据,该样本数据包含各种螺杆高度组合对应的S参数波形;
计算采集到的样本数据的协方差矩阵;
利用奇异值分解求出协方差矩阵的特征向量和特征值,并将特征值按大到
小排序;
选取前k个最大的特征值对应的特征向量得到S参数波形的特征向量。
3.如权利要求2所述的调谐算法,其特征在于,选取前k个最大的特征值
对应的特征向量得到S参数波形的特征向量,其中,所述k为5。
4.如权利要求2所述的调谐算法,其特征在于,训练获得调谐策略模型,
包括:
初始化调谐策略模型,包括设置待调滤波器的调谐指标、神经网络的各参
数、数据储存空间大小、样本抽取数量、训练周期数、最大调谐步数;
从数据空间中随机采样以获取训练样本;每组样本数据包括“原状态(st)、
\t动作(at)、新状态(st+1)、该动作的奖励值(rt)”四部分,其中“原状态”为某
时刻的S参数波形经数据降维后的特征,“动作”为某个可执行的调谐螺杆的调
谐动作,“新状态”为相对于“原状态”,指在执行“动作”后得到的S参数波形降
维后的特征,“该动作的奖励值”为经过以上动作获取到的奖励值,根据当前S
参数波形与调谐目标S参数波形的欧氏距离计算得到;
用训练样本数据训练并更新Q网络,其中输入为训练样本数据中的“原状
态”,输出目标为各执行动作对应的Q值,依据如下公式计算:
yt=rt+γmaxQ^(st+1,at+1;w,b),]]>其中,rt表示第t步的奖励值,w和b为Q网络的参数,即神经网络各层
的权值和偏置,st+1为“新状态”,at+1为“新状态”下可执行的有效动作,γ为设
定的折扣因子;
采样待调滤波器的当前状态的S参数波形,输入当前状态S参数波形降维
后特征,经过Q网络预测获得各个执行动作对应的Q值;
以“ε-贪婪机制”选取合适的Q值对应的执行动作并作用于调谐螺杆,完成
本次的滤波器调谐动作;
采样待调滤波器执行调谐动作后的S参数波形,计算与调谐目标S参数...
【专利技术属性】
技术研发人员:欧勇盛,杨镜锋,王志扬,冯伟,
申请(专利权)人:中国科学院深圳先进技术研究院,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。