【技术实现步骤摘要】
本专利技术属于图像处理
,涉及一种自动聚类图像分割方法,特别涉及一种基于动态局部搜索和免疫克隆自动聚类的图像分割方法,可用于对图像中特征目标的提取和对目标的识别跟踪。
技术介绍
图像分割的过程就是把每个像素点作为一个数据点,分割的结果是为这些数据点赋予一个类标,具有同样类标的像素点分成一类,从而实现对图像的分割。聚类分析是数据挖掘的主要技术之一,将各种聚类方法应用于图像分割是近年来在图像分割领域的一个热门研究方向。从人工参与的程度来看,图像分割可分为人工、半自动、自动三种类型。其中人工分割完全由操作者利用鼠标等工具勾画出分割区域的轮廓,容易受操作者主观因素的影响,并且费时费力重复性差;半自动分割需要针对具体图像和任务确定参数的选取问题,包括设定阈值、分割目标的数目等,实际上多数分割方法都属于半自动分割。自动分割就是利用自动聚类分析实现图像的分割,其中自动聚类分析就是在自动搜索到数据集最优聚类个数的同时找到其最合理的划分。由于大多数自动聚类算法没有充分考虑待分割图像的全局信息,尤其是在针对多区域的图像时,这类分割方法对噪声点比较敏感,导致图像分割的鲁棒性较差,算法的适应范围较小。为解决这些问题,近些年来研究人员将一些进化算法引入到自动聚类方法中,但由于这些进化算法本身在收敛性方面的不足且容易陷入局部最优分割方案,导致分割图像过程中分割的精确度低,收敛速度比较慢。例如,中国专利申请,授权公开号C ...
【技术保护点】
一种基于动态局部搜索和免疫克隆自动聚类的图像分割方法,包括如下步骤:(1)输入一幅待分割图像;(2)采用基于聚类中心的可变长实数编码方式编码抗体,并对该抗体进行初始化,得到第一抗体种群A(t);(3)采用包含全局紧致性和模糊分离度的目标函数,对已得到的第一抗体种群A(t)进行克隆选择操作,得到由非支配抗体组成的第二抗体种群A(1)(t);(4)设置对第二抗体种群A(1)(t)进行优化的当前代数t为0,最大优化代数为tmax;(5)采用人工免疫算法对第二抗体种群A(1)(t)进行优化,实现的步骤为:(5a)采用等比例克隆方式对第二抗体种群A(1)(t)中的抗体进行克隆增殖操作,得到第三抗体种群A(2)(t);(5b)采用单点交叉方式对第三抗体种群A(2)(t)中的抗体进行交叉操作,得到第四抗体种群A(3)(t);(5c)采用非一致性变异方式对第四抗体种群A(3)(t)中的抗体进行变异操作,得到第五抗体种群A(4)(t);(5d)采用动态局部搜索算子对第五抗体种群A(4)(t)中的抗体进行局部搜索操作,得到第六抗体种群A(5)(t);(6)判断当前代数t是否小于最大优化代数tmax,若是, ...
【技术特征摘要】
1.一种基于动态局部搜索和免疫克隆自动聚类的图像分割方法,包括如下步骤:
(1)输入一幅待分割图像;
(2)采用基于聚类中心的可变长实数编码方式编码抗体,并对该抗体进行初始化,得到
第一抗体种群A(t);
(3)采用包含全局紧致性和模糊分离度的目标函数,对已得到的第一抗体种群A(t)进
行克隆选择操作,得到由非支配抗体组成的第二抗体种群A(1)(t);
(4)设置对第二抗体种群A(1)(t)进行优化的当前代数t为0,最大优化代数为tmax;
(5)采用人工免疫算法对第二抗体种群A(1)(t)进行优化,实现的步骤为:
(5a)采用等比例克隆方式对第二抗体种群A(1)(t)中的抗体进行克隆增殖操作,得到第
三抗体种群A(2)(t);
(5b)采用单点交叉方式对第三抗体种群A(2)(t)中的抗体进行交叉操作,得到第四抗体
种群A(3)(t);
(5c)采用非一致性变异方式对第四抗体种群A(3)(t)中的抗体进行变异操作,得到第五
抗体种群A(4)(t);
(5d)采用动态局部搜索算子对第五抗体种群A(4)(t)中的抗体进行局部搜索操作,得到
第六抗体种群A(5)(t);
(6)判断当前代数t是否小于最大优化代数tmax,若是,则将当前代数t加一,用第六抗体
种群A(5)(t)替换第二抗体种群A(1)(t),执行步骤(5),否则,执行步骤(7);
(7)采用半监督方式对第六抗体种群A(5)(t)中的非支配解集进行选择操作,得到最优
分割中心点;
(8)利用已得到的最优分割中心点对待分割图像进行分割,实现步骤如下:
(8a)计算待分割图像中每一个像素点属于最优分割中心点中每个类的隶属度,获得待
分割图像像素点的隶属度矩阵;
(8b)从待分割图像像素点的隶属度矩阵中找出待分割图像中每个像素点所在列中的
最大隶属度,将这些最大隶属度在隶属度矩阵中位置的行标号,作为这些最大隶属度所对
应的像素点的类标号;
(8c)显示待分割图像中所有的类,完成图像分割。
2.根据权利要求1所述的基于动态局部搜索和免疫克隆自动聚类的图像分割方法,其
特征在于步骤(3)中所述的目标函数为:
minf(h(t))=[f1(h(t)),f2(h(t))]
其中,
f1(h(t))=J=Σi=1KΣk=1Nuikmd(vi,xk)Σk=1Nuik]]>f2(h(t))=1S=1Σi=1KΣj=1,j≠iKuijmd(vi,vj)]]>uik=1Σj=1K(d(vi,xk)/d(vj,xk))2/(m-1)]]>uij=1Σs=1,s&NotEq...
【专利技术属性】
技术研发人员:尚荣华,焦李成,都炳琪,李风,刘芳,马文萍,王爽,侯彪,刘红英,
申请(专利权)人:西安电子科技大学,
类型:发明
国别省市:陕西;61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。