【技术实现步骤摘要】
:本专利技术属于锻造
,涉及一种基于BP神经网络的大型模锻压机上横梁速度预测控制方法。
技术介绍
:由于实际锻造过程中时变的负载、非线性液压驱动、以及锻件复杂的流变应力等多种因素影响,致使整个锻造过程非常复杂,从而对准确快速地预测和控制大型模锻压机的动态行为提出了挑战。目前,对大型模锻压机的控制方法主要有:PI控制、迭代学习控制以及滑模控制等方法。这些方法虽然在一定程度上实现了对压机的控制,但是这些方法大都将复杂的锻造过程简化为线性模型,并且忽略了未知扰动。鉴于锻造过程的强非线性和时变性,仅仅用线性模型很难准确地描述整个锻造过程,这些方法不能够达到高品质锻造的要求。随着智能方法的发展,神经网络、模糊集和支持向量机等方法逐渐引入到锻造系统的在线建模中,并且具有非常好的预测能力。因此,可以基于智能方法提出一种简单、快速、高效的大型模锻压机上横梁速度预测控制方法。自从上世纪70年代模型预测控制被提出以来,这种新型的控制策略经过多年的完善和发展,已经广泛应用于工业过程中。模型预测控制的基本特点是:模型预测、滚动优化和反馈控制。本专利技术方法基于模型预测控制方法的基本特点,结合BP神经网络快速、自适应以及良好的泛化和容错能力,避免了模型预测控制方法中预测模型难以建立和滚动优化耗时长的难题,提出了一种简单、快速、高效的大型模锻压机上横梁速度预测控制方法。
技术实现思路
:本专利技术的目的在于提供一种大型模锻压机上横梁速度预测控制方 ...
【技术保护点】
基于BP神经网络的大型模锻压机上横梁速度预测控制方法,其特征在于:根据工业锻造过程的强非线性和时变性,基于模锻工艺数据建立了预测神经网络模型和控制神经网络模型,实现了对大型模锻压机上横梁速度的精准、快速预测和有效控制,该方法包括如下步骤:步骤1:先对模型参数进行初始化,然后根据历史的模锻工艺数据离线训练预测神经网络和控制神经网络;步骤2:由预测神经网络给出系统下一时刻的预测输出;步骤3:对预测输出进行反馈校正,并规划下一时刻的模锻工艺参考值;步骤4:根据反馈校正值和模锻工艺参考值,由控制神经网络给出系统当前时刻的输入;步骤5:在线感知当前时刻的模锻工艺数据,并根据当前的数据反馈调整控制神经网络和预测神经网络;步骤6:转入步骤2,进入下一时刻大型模锻压机上横梁速度的预测控制。
【技术特征摘要】 【专利技术属性】
1.基于BP神经网络的大型模锻压机上横梁速度预测控制方法,其特征在于:根据工业锻造过程的强
非线性和时变性,基于模锻工艺数据建立了预测神经网络模型和控制神经网络模型,实现了对大型模锻压
机上横梁速度的精准、快速预测和有效控制,该方法包括如下步骤:
步骤1:先对模型参数进行初始化,然后根据历史的模锻工艺数据离线训练预测神经网络和控制神经
网络;
步骤2:由预测神经网络给出系统下一时刻的预测输出;
步骤3:对预测输出进行反馈校正,并规划下一时刻的模锻工艺参考值;
步骤4:根据反馈校正值和模锻工艺参考值,由控制神经网络给出系统当前时刻的输入;
步骤5:在线感知当前时刻的模锻工艺数据,并根据当前的数据反馈调整控制神经网络和预测神经网
络;
步骤6:转入步骤2,进入下一时刻大型模锻压机上横梁速度的预测控制。
2.如权利要求1所述方法,其特征在于:步骤2中所述的预测神经网络解决了复杂锻造过程中预测模
型的建模难题,并且此预测神经网络是在线调整的,其权值是基于实际输出y(k+1)与预测输出ym(k+1)的
差值进行反馈调整:
E=12[y(k+1)-ym(k+1)]2]]>输入-隐含层权值调整公式为:
ΔWp1ij=-η∂E∂Wp1ij=η·[y(k+1)-ym(k+1)]·ym(k+1)·(1-ym(k+1))·Wp2i·hp1i·(1-hp1i)·Uj]]>Δbp1i=-η∂E∂bp1i=η·[y(k+1)-ym(k+1)]·ym(k+1)·(1-ym(k+1))·Wp2i·hp1i·(1-hp1i)]]>隐含-输出层权值调整公式为:
ΔWp2i=-η∂E∂Wp2i=η·[y(k+1)-ym(k+1)]·ym(k+1)·(1-ym(k+1))·hp1i]]>Δbp2=-η∂E∂bp2=η·[y(k+1)-ym(k+1)]·ym(k+1)·(1-ym(k+1))]]>其中,η为学习速率,Wp1和bp1为输入-隐含层的权值矩阵和偏移项,Wp2和bp2为隐含-输出层的权值
矩阵和偏移项,U为系统的输入[u(k-2),u(k-1),u(k),y(k-1),y(k)],hp1为隐含层的输出。
技术研发人员:蔺永诚,谌东东,陈明松,
申请(专利权)人:中南大学,
类型:发明
国别省市:湖南;43
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。