当前位置: 首页 > 专利查询>天津大学专利>正文

基于传播算子的2-L型阵列二维DOA估计算法制造技术

技术编号:14876257 阅读:126 留言:0更新日期:2017-03-23 23:45
本发明专利技术涉及采用阵列天线估计接收信号到达方向的技术领域,为解决传统的传播算子算法不能利用所有天线阵元的缺点,构造一个新的传播矩阵。解决基于双平行线阵的传播算子二维DOA估计算法,在俯仰角为70°~90°的实际移动通信俯仰角度范围内的角度估计失效问题。提高方位角和俯仰角的估计性能。本发明专利技术采用的技术方案是,基于传播算子的2‑L型阵列二维DOA估计算法,步骤如下:步骤1:构造接收信号矩阵步骤2:构造传播矩阵步骤3:估计旋转矩阵步骤4:方位角和俯仰角估计。本发明专利技术主要应用于无限探测设备的设计制造。

【技术实现步骤摘要】

本专利技术涉及采用阵列天线估计接收信号到达方向的
,尤其涉及采用2-L型天线阵列的信号到达方向估计方法。
技术介绍
空间信号到达方向(DirectionofArrival,DOA)估计是空间谱估计一个主要研究方向,被广泛应用在雷达、声呐、地震、通信等许多领域。DOA估计的基本问题就是确定同时处在空间某一区域内多个感兴趣的信号的空间位置(即各个信号到达阵列参考阵元的方向角,简称波达方向)。经典的超分辨率DOA估计算法有多重信号分类算法(MUSIC,MultipleSignalClassification)和基于旋转不变技术的信号参数估计算法(ESPRIT,EstimationofSignalParameterviaRotationalInvitationTechniques)。它们都属于子空间类算法,其中MUSIC算法是噪声子空间类算法,ESPRIT算法是信号子空间类算法,以MUSIC算法为代表的算法包括特征矢量法、求根MUSIC法等,以ESPRIT算法为代表的算法包括最小二乘ESPRIT,总体最小二乘ESPRIT等。其中MUSIC算法的中心思想为:利用不同特征值的特征向量之间的正交性将空间划分为正交的子空间,然后使用这种正交性构造阵列空间谱函数,搜索其极值就可以实现空间信号电磁波的来向估计。传统的MUSIC算法和ESPRIT算法等高分辨率算法,虽然具有良好的估计性能,但是由于需要进行谱峰搜索或者是对接收信号协方差矩阵进行特征值分解,在应用到二维DOA估计时具有较大的计算量,尤其是在阵元数目较大时。传播算子算法在求解信号子空间和噪声子空间时仅需要进行线性运算,因此具有较低的计算复杂度。目前,存在大量基于传播算子的L型阵列、2-L型阵列、双平行线阵、三平行线阵等二维DOA估计算法。但是某些基于双平行线阵以及基于L型阵列的传播算子算法在俯仰角为70°~90°的实际移动通信俯仰角度范围内存在角度估计失效问题,有些基于三平行线阵采用传播算子的二维DOA估计算法并没有充分利用天线阵列的结构特点,有些基于2-L型阵列的采用传播算子的二维DOA估计算法分别利用阵列的两个L型子阵,单独估计信号的方位角和俯仰角,估计性能较差。此外还有些算法需要进行费时的谱峰搜索。
技术实现思路
为克服现有技术的不足,本专利技术旨在解决传统的传播算子算法不能利用所有天线阵元的缺点,构造一个新的传播矩阵。解决基于双平行线阵的传播算子二维DOA估计算法,在俯仰角为70°~90°的实际移动通信俯仰角度范围内的角度估计失效问题。提高方位角和俯仰角的估计性能。本专利技术采用的技术方案是,基于传播算子的2-L型阵列二维DOA估计算法,步骤如下:步骤1:构造接收信号矩阵将位于坐标原点的阵元作为参考阵元,线阵X,Y,Z接收到的信号向量分别为x(t)=[x1(t),x2(t),…,xN(t)]T,y(t)=[y1(t),y2(t),…,yN(t)]T和z(t)=[z1(t),z2(t),…,zN(t)]T,其中xi(t),yi(t),zi(t)分别表示线阵X,Y,Z上的第i个阵元在t时刻接收到的信号,N为子阵阵元数目,T表示矩阵转置运算,构造新的接收信号向量w(t)=[xT(t),yT(t),zT(t)]T,且有其中Ax,Ay,Az分别为线阵X,Y,Z的阵列流型矩阵,A为2-L型阵列的阵列流型矩阵,s(t)为阵列的来波信号,n(t)为噪声分量,则对应M快拍的接收数据矩阵为W=[w(1),w(2),…,w(M)];步骤2:构造传播矩阵接收信号的自相关矩阵为将其按如下形式分块,R=[R1,R2],其中H表示矩阵取共轭转置运算,R1∈C3N×K,R2∈C3N×(3N-K),C为复数,则传播矩阵为定义一个新的扩展传播矩阵其中IK×K为K阶的单位矩阵,K为来波信号的个数;步骤3:估计旋转矩阵将Pc按如下形式分块,其中Px,Py,Pz均为N×K的矩阵,定义矩阵其中A1为A的前K行,Pz,1为Pz的前N-1行,Pz,2为Pz的后N-1行,对Ψz进行特征值分解,则其特征值即为的对角线分量,为Φz的估计值,特征向量矩阵即为A1的估计值,其中Φz为子阵Z对应的旋转矩阵,其形式为其中diag表示将一个向量对角化,d为阵元间距,λ为来波信号的波长,θi表示第i个信号的俯仰角,定义两个新的矩阵其中Px,1为Px的前N-1行,Px,2为Px的后N-1行,则有其中为Φx的估计值,Φx的形式为为对应第i个信号的方位角,同理定义两个新的矩阵其中Py,1为Py的前N-1行,Py,2为Py的后N-1行,则有其中为Φy的估计值,Φy的形式为步骤4:方位角和俯仰角估计设分别为的第k个对角线分量,则方位角和俯仰角的估计值分别为其中angle表示取幅角运算,atan表示取反正切运算。本专利技术的特点及有益效果是:通过构造一个新的传播矩阵,利用了所有阵元的信息,能够以较低的计算复杂度获得较好的方位角和俯仰角估计性能;能够实现方位角和俯仰角估计的自动配对;在俯仰角为70°~90°的实际移动通信的俯仰角度范围内不会出现角度模糊问题。附图说明:图1天线阵列结构示意图。图2方位角估计直方图。图3俯仰角估计直方图。图4不同角度组合估计联合均方误差图。图5方位角估计均方误差随信噪比变化情况。图6俯仰角估计均方误差随信噪比变化情况。具体实施方式针对已有DOA估计算法存在的问题,本专利技术提出了一种基于传播算子的2-L型阵列二维DOA估计算法,其特征在于:该天线阵列为2-L型阵列,其中在x轴、y轴和z轴上分别有一个阵元数目为N的均匀线阵,分别用X,Y,Z表示。阵元间距为来波信号波长的一半。本专利技术采用的技术方案:基于传播算子的2-L型阵列二维DOA估计算法,包括以下步骤:步骤1:构造接收信号矩阵。将位于坐标原点的阵元作为参考阵元,线阵X,Y,Z接收到的信号向量分别为x(t)=[x1(t),x2(t),…,xN(t)]T,y(t)=[y1(t),y2(t),…,yN(t)]T和z(t)=[z1(t),z2(t),…,zN(t)]T,其中xi(t),yi(t)zi(t)分别表示线阵X,Y,Z上的第i个阵元在t时刻接收到的信号。构造新的接收信号向量w(t)=[xT(t),yT(t),zT(t)]T,则对应M快拍的接收数据矩阵为W=[w(1),w(2),…,w(M)]。步骤2:构造传播矩阵接收信号的自相关矩阵为将其按如下形式分块,R=[R1,R2],其中R1∈C3N×K,R2∈C3N×(3N-K)。则传播矩阵定义一个新的扩展传播矩阵其中IK×K为K阶的单位矩阵,K为来波信号的个数。步骤3:估计旋转矩阵将Pc按如下形式分块,其中Px,Py,Pz均为N×K的矩阵。定义矩阵其中Pz,1为Pz的前N-1行,Pz,2为Pz的后N-1行。对Ψz进行特征值分解,则其特征值即为的对角线分量,为Φz的估计值,特征向量矩阵即为A1的估计值,其中Φz为子阵Z的阵列流型矩阵。定义两个新的矩阵其中Px,1为Px的前N-1行,Px,2为Px的后N-1行。则有其中为Φx的估计值,其中Φx为子阵X的阵列流型矩阵。同理定义两个新的矩阵其中Py,1为Py的前N-1行,Py,2为Py的后N-1行。则有其中为Φy的估计值,其中Φy为子阵Y的阵列流型矩阵。步骤4:方位角和本文档来自技高网
...
基于传播算子的2-L型阵列二维DOA估计算法

【技术保护点】
一种基于传播算子的2‑L型阵列二维DOA估计算法,其特征是,步骤如下:步骤1:构造接收信号矩阵将位于坐标原点的阵元作为参考阵元,线阵X,Y,Z接收到的信号向量分别为x(t)=[x1(t),x2(t),…,xN(t)]T,y(t)=[y1(t),y2(t),…,yN(t)]T和z(t)=[z1(t),z2(t),…,zN(t)]T,其中xi(t),yi(t),zi(t)分别表示线阵X,Y,Z上的第i个阵元在t时刻接收到的信号,N为子阵阵元数目,T表示矩阵转置运算,构造新的接收信号向量w(t)=[xT(t),yT(t),zT(t)]T,且有其中Ax,Ay,Az分别为线阵X,Y,Z的阵列流型矩阵,A为2‑L型阵列的阵列流型矩阵,s(t)为阵列的来波信号,n(t)为噪声分量,则对应M快拍的接收数据矩阵为W=[w(1),w(2),…,w(M)];步骤2:构造传播矩阵接收信号的自相关矩阵为将其按如下形式分块,R=[R1,R2],其中H表示矩阵取共轭转置运算,R1∈C3N×K,R2∈C3N×(3N‑K),C为复数,则传播矩阵为定义一个新的扩展传播矩阵其中IK×K为K阶的单位矩阵,K为来波信号的个数;步骤3:估计旋转矩阵将Pc按如下形式分块,其中Px,Py,Pz均为N×K的矩阵,定义矩阵其中A1为A的前K行,Pz,1为Pz的前N‑1行,Pz,2为Pz的后N‑1行,对Ψz进行特征值分解,则其特征值即为的对角线分量,为Φz的估计值,特征向量矩阵即为A1的估计值,其中Φz为子阵Z对应的旋转矩阵,其形式为其中diag表示将一个向量对角化,d为阵元间距,λ为来波信号的波长,θi表示第i个信号的俯仰角,定义两个新的矩阵其中Px,1为Px的前N‑1行,Px,2为Px的后N‑1行,则有其中为Φx的估计值,Φx的形式为为对应第i个信号的方位角,同理定义两个新的矩阵其中Py,1为Py的前N‑1行,Py,2为Py的后N‑1行,则有其中为Φy的估计值,Φy的形式为步骤4:方位角和俯仰角估计设分别为的第k个对角线分量,则方位角和俯仰角的估计值分别为其中angle表示取幅角运算,atan表示取反正切运算。...

【技术特征摘要】
1.一种基于传播算子的2-L型阵列二维DOA估计算法,其特征是,步骤如下:步骤1:构造接收信号矩阵将位于坐标原点的阵元作为参考阵元,线阵X,Y,Z接收到的信号向量分别为x(t)=[x1(t),x2(t),…,xN(t)]T,y(t)=[y1(t),y2(t),…,yN(t)]T和z(t)=[z1(t),z2(t),…,zN(t)]T,其中xi(t),yi(t),zi(t)分别表示线阵X,Y,Z上的第i个阵元在t时刻接收到的信号,N为子阵阵元数目,T表示矩阵转置运算,构造新的接收信号向量w(t)=[xT(t),yT(t),zT(t)]T,且有其中Ax,Ay,Az分别为线阵X,Y,Z的阵列流型矩阵,A为2-L型阵列的阵列流型矩阵,s(t)为阵列的来波信号,n(t)为噪声分量,则对应M快拍的接收数据矩阵为W=[w(1),w(2),…,w(M)];步骤2:构造传播矩阵接收信号的自相关矩阵为将其按如下形式分块,R=[R1,R2],其中H表示矩阵取共轭转置运算,R1∈C3N×K,R2∈C3N×(3...

【专利技术属性】
技术研发人员:杨晋生孙光涛陈为刚
申请(专利权)人:天津大学
类型:发明
国别省市:天津;12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1