【技术实现步骤摘要】
本专利技术涉及通信
,具体涉及一种实时信息的推荐方法、装置和系统。
技术介绍
互联网信息的急速增长,使得人们淹没在资讯的海洋中,如何在浩瀚的信息海洋中快速地找到需要的信息,是一个极为重要的问题。为了解决互联网海量信息资源出现的“信息过载”问题,协助用户从玲琅满目的海量信息中快速获取到自己所需的信息,现有技术提出了各种信息的推荐方案,所谓信息推荐,指的是根据用户的兴趣特点和行为,向用户推荐用户感兴趣的信息,为此,现有的推荐算法主要可分为两大类,一是基于行为的推荐算法、二是基于内容的推荐算法。其中,基于行为的推荐算法主要是通过统计用户对信息的行为,以及计算推荐池中各信息的相似度,然后将与该行为所对应的信息相似度较高的信息推荐给用户。而基于内容的推荐算法则主要是通过对各类信息进行打关键字,以及对用户的兴趣进行挖掘,以确定用户所感兴趣的关键字,然后基于该感兴趣的关键字和各类信息的关键字计算推荐列表,并推荐给用户。在对现有技术的研究和实践过程中,本专利技术的专利技术人发现,现有的推荐方案或是需要依赖大量的用户参与,或时没有考虑用户的兴趣变化,因此,时效性较差,而对于实时信息,如新闻类的信息,均具有一次性消费的特点(即对于相同内容的新闻,用户只会阅读一次),时效性极为重要,因此,对于实时信息而言,现有的推荐方案的推荐效果并不佳。
技术实现思路
本专利技术实施例提供一种实时信息的推荐方法、装置和系统,可以提高其时效性,灵活、准确且及时地将用户当前最感兴趣的实时信息推荐给用户,大大改善推荐效果。本专利技术实施例提供一种实时信息的推荐方法,包括:获取用户 ...
【技术保护点】
一种实时信息的推荐方法,其特征在于,包括:获取用户行为数据;根据所述用户行为数据分别计算用户的短期兴趣、长期兴趣和实时兴趣;根据所述用户的短期兴趣、长期兴趣和实时兴趣确定用户兴趣;基于所述用户兴趣向用户推荐实时信息。
【技术特征摘要】
1.一种实时信息的推荐方法,其特征在于,包括:获取用户行为数据;根据所述用户行为数据分别计算用户的短期兴趣、长期兴趣和实时兴趣;根据所述用户的短期兴趣、长期兴趣和实时兴趣确定用户兴趣;基于所述用户兴趣向用户推荐实时信息。2.根据权利要求1所述的方法,其特征在于,所述根据所述用户行为数据分别计算用户的短期兴趣、长期兴趣和实时兴趣,包括:根据所述用户行为数据计算用户在预置周期中每一天的兴趣权值,得到天兴趣权值,并对所述天兴趣权值按照时间进行衰减,得到用户的短期兴趣;根据所述用户行为数据计算用户在预置时间范围内的兴趣权值,得到用户的长期兴趣,所述预置时间范围大于一天;根据所述用户行为数据确定用户当前点击的兴趣权值,得到用户的实时兴趣。3.根据权利要求2所述的方法,其特征在于,所述对所述天兴趣权值按照时间进行衰减,得到用户的短期兴趣,包括:根据所述天兴趣权值确定当前需要进行衰减的兴趣权值;对所述需要进行衰减的兴趣权值按照时间进行衰减,得到衰减后的兴趣权值;返回执行根据所述天兴趣权值确定当前需要进行衰减的兴趣权值的步骤,直至所述天兴趣权值中所有需要进行衰减的兴趣权重衰减完毕;对得到的所有衰减后的兴趣权值进行统计,得到用户的短期兴趣。4.根据权利要求3所述的方法,其特征在于,所述对所述需要进行衰减的兴趣权值按照时间进行衰减,得到衰减后的兴趣权值,包括:确定所述需要进行衰减的兴趣权值所在的日期与当前日期的日期差;计算所述日期差与预置衰减系数的乘积,并计算1与所述乘积的差;将所述需要进行衰减的兴趣权值乘以所述差,得到衰减后的兴趣权值。5.根据权利要求2所述的方法,其特征在于,所述根据所述用户行为数据
\t计算用户在预置时间范围内的兴趣权值,得到用户的长期兴趣,包括:根据所述用户行为数据统计用户在当前日期的一年内,每个月的用户行为;根据所述每个月的用户行为计算每个兴趣在当月的权重;根据所述每个兴趣在当月的权重计算一年内每个兴趣的平均权重;对所述平均权重进行统计,得到用户的长期兴趣。6.根据权利要求1至5任一项所述的方法,所述基于所述用户兴趣向用户推荐实时信息,包括:根据所述用户兴趣,从实时信息的倒排索引中召回相应的实时信息,得到候选推荐信息;基于所述候选推荐信息推荐实时信息给所述用户。7.根据权利要求6所述的方法,其特征在于,所述将基于所述候选推荐信息推荐实时信息给所述用户,包括:计算所述候选推荐信息中各实时信息与所述用户兴趣的匹配度,得到实时信息的兴趣相关性;确定所述候选推荐信息中各实时信息的发布时间确定各实时信息的新鲜度,得到实时信息的时新性;确定所述候选推荐信息中各实时信息的点击率,并根据所述点击率计算点击模型因子;根据所述兴趣相关性、时新性和点击模型因子从所述候选推荐信息中确定推荐信息;将所述推荐信息推荐给所述用户。8.根据权利要求7所述的方法,其特征在于,所述根据所述兴趣相关性、时新性和点击模型因子从所述候选推荐信息中确定推荐信息,包括:根据所述兴趣相关性、时新性和点击模型因子对所述候选推荐信息中的实时信息进行评分;将评分高于预置阈值的实时信息确定为推荐信息。9.根据权利要求6所述的方法,其特征在于,所述根据所述兴趣相关性、时新性和点击模型因子从所述候选推荐信息中确定推荐信息之前,还包括:确实所述候选推荐信息中各实时信息的信息质量;所述根据所述兴趣相关性、时新性和点击模型因子从所述候选推荐信息中确定推荐信息,包括:根据上所述兴趣相关性、时新性、点击模型因子和信息质量从所述候选推荐信息中确定推荐信息。10.根据权利要求9所述的方法,其特征在于,所述根据上所述兴趣相关性、时新性、点击模型因子和信息质量从所述候选推荐信息中确定推荐信息,包括:根据所述兴趣相关性、时新性、点击模型因子和信息质量对所述候选推荐信息中的实时信息进行评分;将评分高于预置阈值的实时信息确定为推荐信息。11.根据权利要求6所述的方法,其特征在于,所述根据所述用户兴趣,从实时信息的倒排索引中召回相应的实时信息,得到候选推荐信息之前,还包括:从原始实时信息库中获取原始实时信息;对获取到的原始实时信息进行特征提取;根据提取到的特征对所述原始实时信息进行分类预测和话题预测,以确定原始实时信息类目和主题;对获取到的原始实时信息的内容进行词性加权处理后,进行文本域加权,以确定原始实时信息所属的关键字;根据原始实时信息类目、主题和关键字计算所述原始实时信息库中原始实时信息的倒排索引,得到实时信息的倒排索引;所述根据所述用户兴趣,从实时信息的倒排索引中召回相应的实...
【专利技术属性】
技术研发人员:胡雨成,
申请(专利权)人:腾讯科技深圳有限公司,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。