一种基于计算机大数据的社交网络中优质节点探测系统技术方案

技术编号:14850559 阅读:125 留言:0更新日期:2017-03-18 13:08
一种基于计算机大数据的社交网络中优质节点探测系统,其包括如下单元:监控分词单元,用于建立优质节点信息传播监控模型;优质节点探测单元,用于从互联网社交系统中探测优质节点;预警单元,用于利用优质节点信息传播监控模型对优质节点发布的信息进行监控,在监控到敏感信息时,将敏感信息以及发布敏感信息的优质节点信息发送到网络监管中心。本发明专利技术能够用于发现社交网络中与用户需求具有较高契合度的核心节点,通过利用优质节点信息传播监控模型对优质节点发布的信息进行监控,在监控到敏感信息时,将敏感信息以及发布敏感信息的优质节点信息发送到网络监管中心,能够有效地对优质节点发布的信息进行监控,防止有害的信息扩散。

【技术实现步骤摘要】

本专利技术涉及计算机云计算
,特别涉及一种基于计算机大数据的社交网络中优质节点探测系统
技术介绍
近几年来,由于社交网络的研究日趋热门,基于社交网络平台上的探测和发现优质用户问题的研究也日益得到人们的重视。通过对这类用户的挖掘,可以和这些优质用户建立更直接的关联以获取蕴含的社会价值。同时由于互联网社交工具的兴起,使得这些优质用户的周围聚起了一大批跟随者,使得优质用户发布的信息容易扩散,并容易被其他人利用起来散步网络谣言。现有技术中缺少一种有效地对互联网社交网络中优质节点的探测以及发布信息的有效监控手段。
技术实现思路
有鉴于此,本专利技术提出一种基于计算机大数据的社交网络中优质节点探测系统。一种基于计算机大数据的社交网络中优质节点探测系统,其包括如下单元:监控分词单元,用于建立优质节点信息传播监控模型;优质节点探测单元,用于从互联网社交系统中探测优质节点;预警单元,用于利用优质节点信息传播监控模型对优质节点发布的信息进行监控,在监控到敏感信息时,将敏感信息以及发布敏感信息的优质节点信息发送到网络监管中心。在本专利技术所述的基于计算机大数据的社交网络中优质节点探测系统中,监控分词单元包括:第一分词子单元,用于将需要训练的网络语言信息按照语言表达规律进行分词;第二分词子单元,用于判断第一分词子单元分词后是否可以继续进行第一分词子单元进行分词,如果不能继续分词,则进行细粒度分词,否则跳转到第一分词子单元按照语言表达规律进行分词;敏感词数据库,用于存储需要监控的敏感信息词汇。在本专利技术所述的基于计算机大数据的社交网络中优质节点探测系统中,所述优质节点探测单元包括:集合确定子单元,用于提取需要探测的优质节点所在的社交网络节点集合;映射建立子单元,用于对社交网络节点集合中的社交网络节点建立社交网络的节点映射关系;模型建立子单元,用于根据优质节点的活动规律提取探测优质节点特征;根据提取的优质节点特征建立优质节点探测的特征规则模型;训练子单元,用于将社交网络节点作为实验样本进行分组,然后进行分组训练和节点分类;修正子单元,用于对优质节点探测的结果进行评估并反馈结果,并在反复地训练过程中将不符合探测优质节点特征的规则进行校正,从而达到对模型进行优化的目的;迭代子单元,用于将优化后的模型再次回到训练子单元中节点训练与分类环节进行优质节点探测以提高探测进度,并进行迭代运算直到优质节点的探测进度超过设定阈值从而完成整个社交网络中优质节点探测过程。在本专利技术所述的基于计算机大数据的社交网络中优质节点探测系统中,所述预警单元包括:数据获取子单元,用于爬取优质节点发布的实时数据并写入数据缓存库;聚类子单元,用于按照预定算法对第一预定时间段内的实时数据进行排序,筛选出第一预定时间段内的超过预设热度值的信息;对第二预定时间段内的由实时数据构成的文本进行突发词抽取,进而进行向量化,对向量化的文本进行聚类,选取各类中异常值最大实时数据作为监测到的异常信息;根据预设阈值显示相应条数的预设热度值的信息和异常信息;判断子单元,用于将预设热度值的信息和异常信息发送到监控分词单元进行筛选判断是否存在敏感词;在监控到敏感词时,将敏感词以及发布包含敏感词信息的优质节点信息发送到网络监管中心。在本专利技术所述的基于计算机大数据的社交网络中优质节点探测系统中,所述模型建立子单元中根据优质节点的活动规律提取探测优质节点特征包括:设置节点被判断为优秀节点的节点属性,在某一节点具备优秀节点的节点属性时,则该节点属性具有高优质性的特征;设置节点之间随着时间的推移就应具备频繁的交互性,称之为交互度Vinter;在社交网络中,如节点具有核心节点的特征,且它们与周边节点间存在连接边;在这些连接边中,将优质节点的主动交互看作是出度Vout,出度为自身指向其它节点的边,而被动交互看作入度Vin,入度为其它节点指向自身的边,则优质节点往往同时存在超过第一预设阈值的入度和出度,且出度入度比接近于1;将同时存在超过预设值的入度和出度,且出度入度比大于1且大于第二预设阈值的节点作为非优质节点。在本专利技术所述的基于计算机大数据的社交网络中优质节点探测系统中,所述模型建立子单元中优质节点探测过程的矩阵表示如下:映射矩阵为被探测对象的入度与出度之间的映射关系矩阵;其中,Min×out表示矩阵名称,In表示节点的入度集合,Out表示节点的出度集合;Vi,in,i=1...n和Vj,out,j=1...m分别表示节点i的入度和节点j的出度;表示节点i入度和节点j出度比值;当i=j时,可对优质节点和非优质节点进行探测,此时优质节点的Pij趋向于1,而非优质节点的Pij大于1且大于第二预设阈值或小于1且小于第三预设阈值;而当i≠j时,若Pij=0表明不同节点间不存在交互关系,否则节点间就存在交互关系。在本专利技术所述的基于计算机大数据的社交网络中优质节点探测系统中,所述修正子单元中还包括制定探测结果的召回率和准确率,并对准确率进行阈值设定,以决定是否跳转到迭代子单元进行迭代运算过程。实施本专利技术提供的基于计算机大数据的社交网络中优质节点探测系统与现有技术相比具有以下有益效果:能够用于发现社交网络中与用户需求具有较高契合度的核心节点,通过利用优质节点信息传播监控模型对优质节点发布的信息进行监控,在监控到敏感信息时,将敏感信息以及发布敏感信息的优质节点信息发送到网络监管中心,能够有效地对优质节点发布的信息进行监控,防止有害的信息扩散。附图说明图1是本专利技术实施例的基于计算机大数据的社交网络中优质节点探测系统结构框图。具体实施方式如图1所示,本专利技术实施例提出的一种基于计算机大数据的社交网络中优质节点探测系统,其包括如下单元:监控分词单元,用于建立优质节点信息传播监控模型;优质节点探测单元,用于从互联网社交系统中探测优质节点;预警单元,用于利用优质节点信息传播监控模型对优质节点发布的信息进行监控,在监控到敏感信息时,将敏感信息以及发布敏感信息的优质节点信息发送到网络监管中心。在本专利技术所述的基于计算机大数据的社交网络中优质节点探测系统中,监控分词单元包括:第一分词子单元,用于将需要训练的网络语言信息按照语言表达规律进行分词;第二分词子单元,用于判断第一分词子单元分词后是否可以继续进行第一分词子单元进行分词,如果不能继续分词,则进行细粒度分词,否则跳转到第一分词子单元按照语言表达规律进行分词;敏感词数据库,用于存储需要监控的敏感信息词汇。在本专利技术所述的基于计算机大数据的社交网络中优质节点探测系统中,所述优质节点探测单元包括:集合确定子单元,用于提取需要探测的优质节点所在的社交网络节点集合;映射建立子单元,用于对社交网络节点集合中的社交网络节点建立社交网络的节点映射关系;模型建立子单元,用于根据优质节点的活动规律提取探测优质节点特征;根据提取的优质节点特征建立优质节点探测的特征规则模型;训练子单元,用于将社交网络节点作为实验样本进行分组,然后进行分组训练和节点分类;修正子单元,用于对优质节点探测的结果进行评估并反馈结果,并在反复地训练过程中将不符合探测优质节点特征的规则进行校正,从而达到对模型进行优化的目的;迭代子单元,用于将优化后的模型再次回到训练子单元中节点训练与分类环节进行优质节点探测以提高探测进度,并进行迭代运本文档来自技高网...
一种基于计算机大数据的社交网络中优质节点探测系统

【技术保护点】
一种基于计算机大数据的社交网络中优质节点探测系统,其特征在于,其包括如下单元:监控分词单元,用于建立优质节点信息传播监控模型;优质节点探测单元,用于从互联网社交系统中探测优质节点;预警单元,用于利用优质节点信息传播监控模型对优质节点发布的信息进行监控,在监控到敏感信息时,将敏感信息以及发布敏感信息的优质节点信息发送到网络监管中心。

【技术特征摘要】
1.一种基于计算机大数据的社交网络中优质节点探测系统,其特征在于,其包括如下单元:监控分词单元,用于建立优质节点信息传播监控模型;优质节点探测单元,用于从互联网社交系统中探测优质节点;预警单元,用于利用优质节点信息传播监控模型对优质节点发布的信息进行监控,在监控到敏感信息时,将敏感信息以及发布敏感信息的优质节点信息发送到网络监管中心。2.如权利要求1所述的基于计算机大数据的社交网络中优质节点探测系统,其特征在于,监控分词单元包括:第一分词子单元,用于将需要训练的网络语言信息按照语言表达规律进行分词;第二分词子单元,用于判断第一分词子单元分词后是否可以继续进行第一分词子单元进行分词,如果不能继续分词,则进行细粒度分词,否则跳转到第一分词子单元按照语言表达规律进行分词;敏感词数据库,用于存储需要监控的敏感信息词汇。3.如权利要求2所述的基于计算机大数据的社交网络中优质节点探测系统,其特征在于,所述优质节点探测单元包括:集合确定子单元,用于提取需要探测的优质节点所在的社交网络节点集合;映射建立子单元,用于对社交网络节点集合中的社交网络节点建立社交网络的节点映射关系;模型建立子单元,用于根据优质节点的活动规律提取探测优质节点特征;根据提取的优质节点特征建立优质节点探测的特征规则模型;训练子单元,用于将社交网络节点作为实验样本进行分组,然后进行分组训练和节点分类;修正子单元,用于对优质节点探测的结果进行评估并反馈结果,并在反复地训练过程中将不符合探测优质节点特征的规则进行校正,从而达到对模型进行优化的目的;迭代子单元,用于将优化后的模型再次回到训练子单元中节点训练与分类环节进行优质节点探测以提高探测进度,并进行迭代运算直到优质节点的探测进度超过设定阈值从而完成整个社交网络中优质节点探测过程。4.如权利要求3所述的基于计算机大数据的社交网络中优质节点探测系统,其特征在于,所述预警单元包括:数据获取子单元,用于爬取优质节点发布的实时数据并写入数据缓存库;聚类子单元,用于按照预定算法对第一预定时间段内的实时数据进行排序,筛选出第一预定时间段内的超过预设热度值的信息;对第二预定时间段内的由实时数据构成的文本进行突发词抽取,进而进行向量化,...

【专利技术属性】
技术研发人员:张兆万
申请(专利权)人:宁波江东大金佰汇信息技术有限公司
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1