本发明专利技术公开了一种带标签信息子字典级联学习的电能质量扰动识别方法,首先对不同类别的电能质量扰动信号降维特征提取并贴入标签信息,然后对不同类别的电能质量降维数据训练成冗余子字典,对含有标签信息的子字典级联成判别性字典进行优化学习,其次输入测试样本信号在优化下的级联字典下进行稀疏,最后重构信号并由冗余误差最小确定目标的类别。本发明专利技术所述的方法加入了标签信息,会获得更加优化字典,使得对电能质量扰动信号有更加精确的识别,同时测试了电能质量复合扰动信号,为实际多分类复杂电能质量的检测和分析提供了方法,对进一步提高供电质量等具有重要的实际意义。
【技术实现步骤摘要】
本专利技术涉及到电力系统电能质量扰动识别
,具体地说,是一种带标签信息子字典级联学习的电能质量扰动识别方法。
技术介绍
随着电力能源的逐步被开发和应用,电能作为一种经济高效的清洁能源成为了应用广泛且最具有潜力的能源。但是,随着电力系统的扩张,电网的迅猛发展和大量大型工业负荷的出现,用户不可避免的大量使用非线性和冲击性的设备,导致电能波形、频率幅值的不均衡变化,造成电能质量的污染。同时当电力系统的安全稳定运行受到威胁时,联在上面的负载和设备必然也会受到损害,因此对电能质量扰动的准确识别,实现电能质量问题的分析与评估以及电网安全有效的运行具有重要意义。电能质量的扰动分为稳态和暂态的情况。随着电能质量对国民经济的影响逐步加大,实际电网发生的扰动情况都比较复杂,一般都是由各种单一扰动相互作用而引发的复合扰动。由于复合扰动会因单一扰动导致混叠和消失等情况的发生,复合扰动的特征提取和识别问题都是一大难点。多标签分类是分类问题中比较复杂的问题,它允许样本同时属于多个类别,而电能质量复合扰动问题就是属于多标签分类的范畴,但目前多标签分类问题主要是分解成多个二分类问题,但是这种分类问题缺少对标签之间相关性的考虑。字典学习最重要的是通过学习相应的字典学习代价函数,获得能够对信号进行稀疏表示的字典,因而字典优劣会影响着识别效果的好坏。传统的字典学习仅仅是对某一类信号的学习,而本专利技术中先是学习每个子字典,然后将子字典级联成结构化字典,同时加入了子字典相关性的判别式,不仅提高了单一扰动识别率,也增加了对复杂信号的识别力,解决了实际电力系统中复合电能质量的扰动识别问题。专利
技术实现思路
本专利技术公开了一种带标签信息子字典级联学习的电能质量扰动识别方法,所述的方法加入了标签信息,会获得更加优化字典,使得对电能质量扰动信号有更加精确的识别,同时测试了电能质量复合扰动信号,为实际电能质量的检测和分析提供了方法,对进一步提高供电质量等具有重要的实际意义。本专利技术采用的技术方案具体包括以下几个步骤:步骤1、建立K类电能质量扰动信号模型,生成相应的含有复合信号的训练样本集利用主成分分析PCA方法进行降维特征提取,并贴上标签;步骤2、采用训练字典的算法对K类降维的电能质量数据训练成冗余子字典,对含有标签信息的子字典级联成结构化字典,同时降维训练样本是具有标签性的矩阵,目标字典是具有带线性分类器参数形式;步骤3、输入降维特征提取的测试样本信号,让其在优化下的级联字典下进行稀疏表示,获得稀疏表示矩阵形式;步骤4、利用K类电能质量扰动信号的训练样本的子字典依次重构K个降维测试样本信号,分别计算与原降维测试样本信号的冗余误差,由冗余误差最小值确定目标归属类。进一步,步骤1中,K类电能质量扰动信号的训练样本集为:E=[E1,E2,...,Ek]∈RM×N,其中k表示训练样本类别数,M表示为采样点数,N为信号长度,每一类训练样本集Ei,训练的样本集类别分别代表电压正常,电压暂降,电压谐波,电压中断,电压缺口,电压振荡,电压尖峰,电压暂升以及相应组合的复合信号构成,经过PCA降维以后获得的特征矩阵为Y=[Y1,Y2,...,Yk]∈RP×N,其中P<M,对于标签信息的电能质量模型信号,可以附加标签信息矩阵H=[H1,H2,...,Hk],则H1=[0,0,...,1]T表示电压暂升。进一步,步骤2中,采用训练字典的算法对K类降维的电能质量数据训练成冗余子字典以及结构化字典的进行优化,该过程可以分为以下几个步骤:步骤2.1)、选取降维后的特征训练样本的部分原子作为初始化字典Di,每个特征原子作为作为初始化冗余字典的每一列,为了提高算法的运算效率,对初始化的字典作归一化处理,||Dij||2=1,i=1,2,...,k,j=1,2,...,P,Dij作为字典的列向量,于是级联之后的结构化字典:D=[D1,D2,...,Dk],其中i,j=1,2,...,k。步骤2.2)、对于字典的优化目标函数为:i=1,2,...,k,j=1,2,...,P,降维样本Yi在字典D上的编码系数Ai可以表示为表示Yi在Dj上的编码系数,因此降维训练样本可以表示为:目标函数中为重构精度要求,保证降维子训练样本Yi可以被子字典Di很好的表示,同时子训练样本在其他子字典Dj(j≠i)上系数非常小,Dj就不能很好地重构Yi,W是线性分类器H-WA的参数矩阵,H为标签矩阵,这样编码系数A和对应的类别标签H就建立了一个线性分类器,通过学习后该分类器对编码系数具有良好的识别力,这样就能用学习得到的线性分类器来进行识别。μ,η,β,λ为正则化参数用来权衡误差和稀疏程度。步骤2.3)、设置迭代次数s和迭代的阈值Js。进一步,对目标函数需要进一步优化求解,设置于是对目标函数进行进一步的优化:i=1,2,...k,j=1,2,...P,μ,λ为权衡误差和稀疏程度的标量参数。由于D′做了归一化处理,就可以直接省略。通过上述的换元,将训练样本矩阵Y转化为带标签信息的矩阵Y′,将字典D转化为带线性分类器参数的字典D′,将三个变量D、A、W转变为两个变量D′、A′,极大地提高了字典的求解效率。进一步,还包括,对优化后的字典模型进行学习,分为两个部分:稀疏编码和字典更新:稀疏编码:固定字典D′更新稀疏编码稀疏A′:字典更新:更新的稀疏编码稀疏A′来更新字典D′:字典D′的更新是通过逐个子字典依次更新的,D′=[D1′,D2′,...,Dk′]。进一步,步骤3中,获得测试信号的稀疏表示矩阵,稀疏表示是通过子字典更新得到的稀疏表示矩阵进一步,步骤4中,由冗余误差最小值确定目标归属类:本专利技术的有益效果是:本专利技术公开了一种带标签信息子字典级联学习的电能质量扰动识别方法,首先对不同类别的电能质量扰动信号(含复合信号)特征提取并贴入标签信息,然后对不同类别的电能质量数据降维提取并训练成冗余子字典,对含有标签信息的子字典级联成判别性字典进行优化学习,其次输入测试样本信号在优化下的级联字典下进行稀疏,最后重构信号并由冗余误差最小确定目标的类别。本专利技术所述的方法加入了标签信息,会获得更加优化字典,使得对电能质量扰动信号有更加精确的识别,同时测试了电能质量复合扰动信号,为实际电能质量的检测和分析提供了方法,对进一步提高供电质量等具有重要的实际意义。附图说明图1是带标签信息子字典级联学习的流程图。图2是8类电能质量扰动信号训练样本集的MATLAB仿真图;(a)为正常电压信号;(b)为电压暂降信号;(c)为电压谐波信号;(d)为电压中断信号;(e)为电压缺口信号;(f)为电压振荡信号;(g)为电压尖峰信号;(h)为电压暂升信号。图3为实验中采用8类训练样本的MATLAB仿真图;(a)为正常电压信号;(b)为电压振荡信号;(c)为电压暂升信号;(d)为电压谐波信号;(e)为电压缺口信号;(f)为电压谐波、暂降信号;(g)为谐波、中断、暂升信号;(h)为谐波、中断、暂升、中断信号。具体实施方式一种带标签信息子字典级联学习的电能质量扰动识别方法,本专利技术主要包括以下步骤:步骤(1):建立K类电能质量扰动信号模型,生成相应的含有复合信号的训练样本集利用主成分分析PCA方法进行降维特征提取,并贴上标签。K类电能质量扰动信号的训练样本集为:本文档来自技高网...
【技术保护点】
一种带标签信息子字典级联学习的电能质量扰动识别方法,其特征在于,包括以下几个步骤:步骤1、建立K类电能质量扰动信号模型,生成相应的含有复合信号的训练样本集利用主成分分析PCA方法进行降维特征提取,并贴上标签;步骤2、采用训练字典的算法对K类降维的电能质量数据训练成冗余子字典,对含有标签信息的子字典级联成结构化字典,同时降维训练样本是具有标签性的矩阵,目标字典是具有带线性分类器参数形式;步骤3、输入降维特征提取的测试样本信号,让其在优化下的级联字典下进行稀疏表示,获得稀疏表示矩阵形式;步骤4、利用K类电能质量扰动信号的训练样本的子字典依次重构K个降维测试样本信号,分别计算与原降维测试样本信号的冗余误差,由冗余误差最小值确定目标归属类。
【技术特征摘要】
1.一种带标签信息子字典级联学习的电能质量扰动识别方法,其特征在于,包括以下几个步骤:步骤1、建立K类电能质量扰动信号模型,生成相应的含有复合信号的训练样本集利用主成分分析PCA方法进行降维特征提取,并贴上标签;步骤2、采用训练字典的算法对K类降维的电能质量数据训练成冗余子字典,对含有标签信息的子字典级联成结构化字典,同时降维训练样本是具有标签性的矩阵,目标字典是具有带线性分类器参数形式;步骤3、输入降维特征提取的测试样本信号,让其在优化下的级联字典下进行稀疏表示,获得稀疏表示矩阵形式;步骤4、利用K类电能质量扰动信号的训练样本的子字典依次重构K个降维测试样本信号,分别计算与原降维测试样本信号的冗余误差,由冗余误差最小值确定目标归属类。2.根据权利要求1所述的一种带标签信息子字典级联学习的电能质量扰动识别方法,其特征是:步骤1中,所述生成相应的含有复合信号的训练样本集为:E=[E1,E2,...,Ek]∈RM×N,其中k表示训练样本类别数,M表示为采样点数,N为信号长度,每一类训练样本集Ei,训练的样本集类别分别代表电压正常,电压暂降,电压谐波,电压中断,电压缺口,电压振荡,电压尖峰,电压暂升以及相应组合的复合信号构成,...
【专利技术属性】
技术研发人员:沈跃,李光武,刘慧,
申请(专利权)人:江苏大学,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。