本发明专利技术涉及基于亚像素边缘算法的平面零件尺寸测量方法,利用CCD设备作为测量平台,包括下列步骤:1、钣金零件成像特性分析;2、Canny边缘粗定位;3、基于多项式拟合的亚像素检测;4、区分被测物上下边缘;5三角法求取被测物准确边缘;6、被测物尺寸恢复,突破了目前基于CCD的尺寸测量技术中多用于小尺寸物体测量的局限,提出了亚像素精度边缘检测算法,首先,结合光学成像理论分析了背光光源下不同厚度钣金零件的边缘特性,提出面向相机一侧有上下边缘,然后根据钣金零件图像的边缘分布特征,采用Canny边缘检测和多项式拟合算法实现亚像素边缘提取,提出平均距离法区分零件上下边缘,进而利用三角法解算获取零件真实边缘,最终利用成像原理和直线与零件表面交点确定零件尺寸。
【技术实现步骤摘要】
本专利技术属于图像处理技术(机器视觉)领域,涉及一种基于亚像素边缘算法的平面零件尺寸测量方法,可以实现对加工后的机械零件进行高精度、高效率的检测。
技术介绍
检测技术是现代制造业的基础技术之一,是保证产品质量的关键。在钣金加工领域,零件尺寸的在线高精度检测已经成为一个重要研究课题。机器视觉测量技术具有非接触、速度快、高精度和环境适应性好等优点,能够很好地满足现代工业在线测量的要求,已经成为先进制造领域内最先进的在线测量技术之一,而边缘检测是机器视觉检测技术的基础和关键,边缘的定位精度直接影响到尺寸检测的精度。 传统的边缘检测算法仅能达到像素级精度,不能很好地满足测量精度要求,因此对像素级的精度再细分即亚像素级的边缘定位技术研究十分必要。在视觉检测系统中,亚像素边缘的检测和定位精度是其最终测量精度的关键。亚像素边缘检测技术最早由Hueckel提出,现已发展为插值法、矩法和拟合法等多种方法。它们的边缘检测精度、抗噪声能力以及算法复杂度各不相同。插值法定位依赖于相邻像素间的灰度、坐标关系和插值函数的选取,计算时间短,但定位精度低。基于矩的亚像素技术利用的是积分算子,对噪声不敏感,但是通常矩方法缺少明确的准则来区分像素是否属于边缘,另外对包含梯度变化的像素集都会产生响应并且只在边缘像素的近邻域有效,如果边缘位置比积分区域远,基于矩的方法就会失效。王希军,陈阔等人分析了不同亚像素定位算法受各方面因素的影响情况,分别对几类亚像素边缘定位算法的稳定性以及定位精度的评价方法进行了研究。在被测物有一定的厚度且尺寸较大时,在距离相机一侧时会有上下边缘,而在相机另一侧时,只有上边缘,因此边缘信息需要判别上边缘与下边缘,Antonis.Jan提出了利用法线角和参考角的差值关系判别上下边缘,但是在差值临界区会出现判别错误,并且应用在圆形轮廓中会出现边缘不连续现象。 针对钣金零件亚像素边缘准确提取困难的问题,本文通过分析不同厚度钣金零件的边缘特性,采用Canny边缘检测和多项式拟合算法实现亚像素边缘提取,提出平均距离法区分零件上下边缘,进而利用三角法解算获取零件真实边缘,从而测量零件尺寸。并通过实验验证了本文的亚像素准确边缘提取算法的可行性。
技术实现思路
本专利技术的目的就是为克服现有技术的不足,提供一种亚像素边缘算法的平面零件尺寸测量方法,测量精度在1×0.75m2的视场内,系统测量精度达到了0.05mm,关键技术可以提高检测机械零件的精度和效率,避免了传统人工检测时所带来的主观性、易疲劳、速度慢、成本高、强度大等缺点。特别是对金属板材精密裁切提供理论和技术上的支持。 本专利技术是通过这样的技术方案实现的:基于亚像素边缘算法的平面零件尺寸测量方法,利用CCD设备作为测量平台,其特征在于,包括下列步骤: (1)结合光学成像理论分析了背光光源下不同厚度钣金零件的边缘特性; (2)根据钣金零件图像的边缘分布特征,采用Canny边缘粗定位; (3)基于多项式拟合的亚像素检测; (4)通过平均距离法区分被测物上下边缘; (5)采用三角法求取钣金零件准确边缘; (6)利用成像原理和直线与零件表面交点确定被测物尺寸。 本专利技术的实质性特点是,基于亚像素边缘算法的平面零件尺寸测量方法,该模型综合运用了基于多项式拟合的亚像素检测,平均距离法区分零件上下边缘等技术。首先,结合光学成像理论分析了背光光源下不同厚度钣金零件的边缘特性,提出面向相机一侧有上下边缘。然后根据钣金零件图像的边缘分布特征,采用Canny边缘检测和多项式拟合算法实现亚像素边缘提取,提出平均距离法区分零件上下边缘,进而利用三角法解算获取零件真实边缘,最终利用成像原理和直线与零件表面交点确定零件尺寸。实验结果表明,在1×0.75m2的视场内,系统测量精度达到了0.05mm。本专利技术与现有技术相比较具有如下优点: 1.结合光学成像理论分析了背光光源下不同厚度钣金零件的边缘特性,提出面向相机一侧有上下边缘。 2.提出平均距离法区分零件上下边缘。进而利用三角法解算获取零件真实边缘,最终利用成像原理和直线与零件表面交点确定零件尺寸。 3.本专利技术在计算边缘时采用亚像素的边缘提取,精度较高。 附图说明图1:本专利技术的方法流程图; 图2:边缘灰度提取图; 图3:三角法图。 具体实施方式本专利技术的流程图如图1所示,首先结合光学成像理论分析了背光光源下不同厚度钣金零件的边缘特性,提出面向相机一侧有上下边缘。然后根据钣金零件图像的边缘分布特征,采用Canny边缘检测和多项式拟合算法实现亚像素边缘提取,提出平均距离法区分零件上下边缘。之后进而利用三角法解算获取零件真实边缘,最终利用成像原理和直线与零件表面交点确定零件尺寸。下面结合附图,对本专利技术技术方案的具体实施过程加以说明。 1.钣金零件的边缘特性分析 实际的CCD成像系统中,CCD感光元不但接收照射到自身感光面的光,还接收照射到相邻感光元的光,尤其是对边缘点,物体和背景的不同反射特性以及CCD器件的积分效应,造成CCD器件对阶跃边缘的响应产生由明到暗或由暗到明的渐变过程,所以边缘在图像中表征为一种灰度分布,如图2所示;另外,当被测物有一定的厚度且尺寸较大时,在距离相机一侧存在两个梯度值较大的过渡带,而在相机另一侧时,只有上边缘;因此边缘信息需要区分上边缘与下边缘,并只提取对相机都看见的上边缘;然后通过Canny算子进行整像素级的边缘提取,得到整像素级的边缘后用三次多项式拟合的方法提取亚像素边缘精确定位,再通过平均距离法确定钣金零件的上边缘,通过三角法最终确定零件的实际边缘,最后利用成像原理和直线与零件表面交点确定被测物尺寸。 2.Canny算子粗定位边缘 亚像素边缘定位前必须先采用像素级边缘检测方法确定边缘点的位置,然后根据边缘点 附近的灰度分布来进行亚像素定位;选用Canny算子进行整像素级边缘提取,首先对图像进行高斯平滑,通过高斯卷积实现;然后对平滑后的图像进行简单的2维一阶微分操作,得到梯度大小和方向,采用以下2×2大小的模板作为对x方向和y方向偏微分的一阶近似 Gx=12-11-11,Gy=1211-1-1]]>由此得到梯度大小和方向分别为 M(x,y)=Gx2(x,y)+Gy2(x,y)]]>θ=arctan[Gy(x,y)/Gx(x,y)] 式中:Gx,Gy分别为图像像素点x方向和y方向偏微分的一阶近似,M(x,y)为此点的梯度大小,θ为该点梯度方向; 然后采用“非最大抑制”算法寻找图像中的可能边缘点,最后通过双门限值递归寻找图像边缘点得到单像素宽度边缘图像。 3.多项式拟合提取亚像素边缘 提取亚像素边缘使用三次多项式拟合法,根据灰度分布函数的特点,利用多项式函数对灰度分布作最小二乘拟合,并根据拟合出的函数曲线来确定灰度分布边缘点即亚像素边缘点的位置; 采用的三次多项式的形式为f(x,y)=ax3+bx2+cx+d并且假设将全部测量值与回归直线的偏离平方和记为S,本文档来自技高网...
【技术保护点】
基于亚像素边缘算法的平面零件尺寸测量方法,利用CCD设备作为测量平台,其特征在于,包括下列步骤: (1)结合光学成像理论分析了背光光源下不同厚度钣金零件的边缘特性; (2)根据钣金零件图像的边缘分布特征,采用Canny边缘粗定位; (3)基于多项式拟合的亚像素检测; (4)通过平均距离法区分被测物上下边缘; (5)采用三角法求取钣金零件准确边缘; (6)利用成像原理和直线与零件表面交点确定被测物尺寸。
【技术特征摘要】
1.基于亚像素边缘算法的平面零件尺寸测量方法,利用CCD设备作为测量平台,其特征在于,包括下列步骤:
(1)结合光学成像理论分析了背光光源下不同厚度钣金零件的边缘特性;
(2)根据钣金零件图像的边缘分布特征,采用Canny边缘粗定位;
(3)基于多项式拟合的亚像素检测;
(4)通过平均距离法区分被测物上下边缘;
(5)采用三角法求取钣金零件准确边缘;
(6)利用成像原理和直线与零件表面交点确定被测物尺寸。
2.根据权利要求1所述的基于亚像素边缘算法的平面零件尺寸测量方法,其特征在于,步骤(1)中
实际的CCD成像系统中,CCD感光元不但接收照射到自身感光面的光,还接收照射到相邻感光元的光,尤其是对边缘点,物体和背景的不同反射特性以及CCD器件的积分效应,造成CCD器件对阶跃边缘的响应产生由明到暗或由暗到明的渐变过程,所以边缘在图像中表征为一种灰度分布,如图2所示;另外,当被测物有一定的厚度且尺寸较大时,在距离相机一侧存在两个梯度值较大的过渡带,而在相机另一侧时,只有上边缘;因此边缘信息需要区分上边缘与下边缘,并只提取对相机都看见的上边缘;然后通过Canny算子进行整像素级的边缘提取,得到整像素级的边缘后用三次多项式拟合的方法提取亚像素边缘精确定位,再通过平均距离法确定钣金零件的上边缘,通过三角法最终确定零件的实际边缘,最后利用成像原理和直线与零件表面交点确定被测物尺寸。
3.根据权利要求1所述的基于亚像素边缘算法的平面零件尺寸测量方法,其特征在于,步骤(2)中,
亚像素边缘定位前必须先采用像素级边缘检测方法确定边缘点的位置,然后根据边缘点附近的灰度分布来进行亚像素定位;选用Canny算子进行整像素级边缘提取,首先对图像进行高斯平滑,通过高斯卷积实现;然后对平滑后的图像进行简单的2维一阶微分操作,得到梯度大小...
【专利技术属性】
技术研发人员:耿磊,李文杰,肖志涛,张芳,吴骏,李月龙,袁菲,杨振杰,苏静静,
申请(专利权)人:天津工业大学,
类型:发明
国别省市:天津;12
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。