本发明专利技术涉及一种基于石墨烯栅层微细光纤的电光任意波形发生器,本发明专利技术所述的基于石墨烯栅层微细光纤的电光任意波形发生器,包括:微细光纤、石墨烯栅层、正电极阵列、负电极阵列和平板基底,石墨烯栅层置于平板基底上,微细光纤置于石墨烯栅层上,正电极阵列包括多个正电极,负电极阵列包括多个负电极,正电极阵列的各正电极与负电极阵列的各负电极分别连接于石墨烯栅层各单元的两端。将所需波形编辑成随时间变化的空间电信号阵列,将产生的随时间变化的空间电信号阵列施加在石墨烯栅层各单元的两端。以较低频率改变电极阵列所产生的空间电信号阵列,该发生器可以精确产生任意所需波形。
【技术实现步骤摘要】
本专利技术属于通信用光纤器件领域,特别涉及一种基于石墨烯栅层微细光纤的电光任意波形发生器。
技术介绍
任意波形光脉冲(OAWG)可以满足下一代网络对超高速传输速率和超宽带宽的需求:OAWG可以产生宽带微波信号,比如适合通信的高斯信号以及能量效率较高的波形;OAWG可以提供复杂的全光矢量调制格式,如QAM、QPSK、DPSK、DSB-SC等,提高传输频谱效率;OAWG可以对接收信号进行色散补偿,提高信号质量;OAWG可以进行太赫兹信号合成,适应超高速通信系统;OAWG在全光报文分组网络中,用于产生光标签;OAWG还可以产生任意微波信号,如多通道时分复用的射频任意波形。对光波型的控制可以从频域和时域两个角度实现。频域方法主要基于衍射光栅、阵列波导和光纤光栅等器件。基于衍射光栅的频域方法利用衍射光栅将输入光脉冲的频谱成分在空间上进行分离,光脉冲形状由掩膜版在频域上的傅里叶变换模式决定。固定掩膜版无法实时调控,而利用可编程的空间光调制器可以对不同空间位置的光进行幅度和相位调节,然而实现任意波形的输出要求空间光调制器具有较高的调制带宽和空间分辨率。2005年,Z.Jiang等人提出逐行整形的概念,使用高分辨率衍射光栅获得的空间光梳作为输入,利用液晶空间光调制器独立控制每条谱线,获得高占空比的输出波形。可是在这种方法中,空间光调制器的调制速度与产生波形的质量需要平衡,无法同时达到最优,同时这种方法存在准直控制复杂、耦合损耗高和不易集成等问题,限制实际应用。阵列波导光栅通道较多,可以用来分辨光梳中的各条谱线,与调制器阵列相结合,可以实现对各个谱线幅度和相位独立的操控。然而基于阵列波导光栅的方法整形的谱线数量受到其自由光谱范围的限制,目前最多为49条,同时相邻通道间色度的干扰也是频域分辨率无法低于10Ghz。基于光纤光栅的整形结构使得简单低损耗的全光纤系统成为可能。由于具有复杂反射谱的光纤光栅制作难度较高,NaumK.Berger等人提出了级联均匀光纤布拉格光栅,并设计了各光栅的反射率、时延和相移。其他产生任意波形的方法还有:色散补偿光纤结合电光相位调制器、基于微波光子滤波器(MZ干涉仪结合电光调制器)、产生任意形状电脉冲控制激光、利用交叉相位调制中产生的非线性相移和光纤环境对光脉冲整形、利用非线性高双折射光纤实现脉冲整形以及脉冲堆积等办法。频域波形控制方法在实际应用中对于外界环境有较高的要求,分布在空间中的不同频率成分很难对于环境噪声有相同的响应,影响了控制的准确性。很多情况下频域方法是对各波长分别进行相位操作,这要求器件制作有很高的精度。同时,频域方法基于光梳输入,这对光梳的数量和频率间隔都有要求。采用合适的时域方法可以有效地减小环境的影响,同时降低器件的制作难度。基于调制器的时域方法要求调制器具有超快的响应速度、调制深度和很小的尺寸,以石墨烯为代表的二维材料是很好的选择。石墨烯是由碳原子以sp2杂化轨道组成正六边形呈蜂窝状晶格的二位氮原子层平面晶体薄膜,狄拉克锥能带结构使其具有各种奇特和突出的光电性能(饱和吸收、超快载流子跃迁和弛豫过程等)。基于这些特性的光调制器、超快锁模激光器、光电探测器、偏振控制器、光限幅器以及光伏器件、透明电极和导电薄膜已经被实验演示或商品化。其中,基于石墨烯的光调制器在调制速度方面展现了其他材料调制器无法比拟的优势,同时也兼顾集成性、调制深度、调制带宽和功耗等方面的考虑。基于石墨烯的电光调制器通过改变电压调控石墨烯的费米能级,控制石墨烯对载波的传输和吸收性能实现调制,同时石墨烯超快的载流子弛豫速度使得这种调制的速度可以非常快(几百fs到几ps)。超宽波长调制范围、大调制深度、低功耗和高面积效率也是石墨烯给予全光调制的优点。自2011年加州大学伯克利分校的刘明等人首次实现石墨烯电光调制以来,大量石墨烯电光调制器的仿真计算和实验被报道,成为目前基于石墨烯调制研究的主要方向。将光纤作为波导结构与石墨烯结合使调制器借助光纤的优点:调制器与现有光纤通信系统兼容,极低的输入、输出耦合损耗;光可以在光纤中以基模传输,极低的传输损耗;光纤结构理论成熟、性能清晰、种类多样,利于与石墨烯结合设计出各种性能优良的调制器。需要注意的是,已有的调制器都是采用空间上单点调制的方式,这样产生的已调信号的速度等于调制信号速度,当需要在载波中加载超高频率的信号时就需要超高速的调制信号,而产生超快电信号的高速电路与产生超高重复频率光脉冲序列的光系统都是难以制作的,价格也是昂贵的。光时分复用是产生高速信号一种有效的办法,但是光时分复用器对制作精度要求很高,而且对温度敏感,同时其本身需要很窄的脉冲光作为光源。将高重复频率的调制信号在空间上拆解为很多低重复频率的调制信号,在光波导的不同位置同时加载,对载波的不同空间部分进行同时调制同样可以得到高速调制的效果,这种方法由本专利技术首次提出,称为空间调制。基于上述石墨烯空间调制器的任意光波形发生器在空间上对不同位置的载波进行不同的吸收,时域上产生任意光波形,该发生器具有上述石墨烯空间调制器的所有优点,是石墨烯空间调制器的一种很好的应用。
技术实现思路
针对现有技术中存在的缺陷,本专利技术提出了基于石墨烯栅层微细光纤的电光任意波形发生器,旨在精确产生无限定范围任意需要的波形。为达到以上目的,本专利技术采取的技术方案是:基于石墨烯栅层微细光纤的电光任意波形发生器,包括:微细光纤1、石墨烯栅层2、正电极阵列3、负电极阵列4和平板基底5;所述石墨烯栅层2置于平板基底5上,所述微细光纤1置于石墨烯栅层2上;所述正电极阵列3包括多个正电极,所述负电极阵列4包括多个负电极;所述正电极阵列3的各正电极与负电极阵列4的各负电极分别连接于石墨烯栅层2各单元的两端。在上述方案的基础上,所述微细光纤1的直径为1-20μm。在上述方案的基础上,所述石墨烯栅层2的层数小于10。在上述方案的基础上,所述石墨烯栅层2各单元的长度为20-500μm,相邻单元间距为100-3000μm,单元数为30。在上述方案的基础上,所述石墨烯栅层2的空间周期在微米量级,所述空间周期为两条相邻石墨烯带的间距。经过上述设置,将所需波形编辑成电极阵列产生的随时间变化的空间电信号阵列,以较低频率改变电极阵列所产生的空间电信号阵列,该发生器可以精确产生任意所需波形。本专利技术基本原理:微细光纤1具有强烈的倏逝场,将载波扩散到石墨烯栅层2中接受调制。电极阵列的各正、负电极对分别向石墨烯栅层2中对应的单元同时施加电压,同时改变各单元的费米能级,从而调节石墨烯栅层2对所在空间位置载波的吸收能力。所需波形被拆解编辑为电极阵列产生的随时间变化的空间电信号阵列,将产生的随时间变化的空间电信号阵列施加在石墨烯栅层2各单元的两端,使石墨烯栅层2的吸收特性在沿微细光纤1轴向上形成与空间电信号阵列相同的空间分布,对载波进行可调的多位置同时吸收。石墨烯超短的载流子弛豫时间使各个位置载波被吸收形成的波形具有三个特点:微米级宽度,幅度可由其位置处电信号控制,形状非常接近矩形。石墨烯栅层2各个位置经吸收的载波的波形按空间顺序组合形成波包,即产生了所需的波形。微细光纤1轴方向大尺寸的石墨烯栅层2可以在同一时间点加载大空间长度的所需波形,降低了所需的电极阵列所加电压的变化速度,本文档来自技高网...
【技术保护点】
一种基于石墨烯栅层微细光纤的电光任意波形发生器,其特征在于:包括:微细光纤(1)、石墨烯栅层(2)、正电极阵列(3)、负电极阵列(4)和平板基底(5);所述石墨烯栅层(2)置于平板基底(5)上,所述微细光纤(1)置于石墨烯栅层(2)上;所述正电极阵列(3)包括多个正电极,所述负电极阵列(4)包括多个负电极;所述正电极阵列(3)的各正电极与负电极阵列(4)的各负电极分别连接于石墨烯栅层(2)各单元的两端。
【技术特征摘要】
1.一种基于石墨烯栅层微细光纤的电光任意波形发生器,其特征在于:包括:微细光纤(1)、石墨烯栅层(2)、正电极阵列(3)、负电极阵列(4)和平板基底(5);所述石墨烯栅层(2)置于平板基底(5)上,所述微细光纤(1)置于石墨烯栅层(2)上;所述正电极阵列(3)包括多个正电极,所述负电极阵列(4)包括多个负电极;所述正电极阵列(3)的各正电极与负电极阵列(4)的各负电极分别连接于石墨烯栅层(2)各单元的两端...
【专利技术属性】
技术研发人员:白冰,裴丽,
申请(专利权)人:北京交通大学,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。