本发明专利技术涉及的技术方案是提供一种轻金属表面微等离子体陶瓷涂层工艺,其特征在于,用电解的方法使氧化膜层在基材表面生长,其电解液由以下重量配比的原料制成:碱性盐溶液5~10%、Na↓[2]O↓[2]4~6%、NaF0.5~1%、CH↓[3]COONa2~3%、Na↓[3]VO↓[3]1~3%、H↓[2]O80~87%,其电解方式为:将轻金属基工件除油,洗净;按重量配比调制电解液;将电压迅速上升至250-350V,并保持5~10s;然后将阳极氧化电压上升至200-600V,温度为10~90℃;将轻金属基工件放在电解液中电解10-60min。本发明专利技术的优点是提升耐磨性能及陶瓷层结合强度。
Micro plasma ceramic coating process on light metal surface
The present invention relates to the technical scheme is to provide a light metal surface micro plasma ceramic coating technology, which is characterized in that the oxide film made by electrolysis method growth on the surface of the substrate, the weight ratio of the electrolyte consists of the following raw materials: alkaline salt solution 5 ~ 10% Na and 2 O down: 2 ~ 4 6%, NaF0.5 ~ 1%, CH: 3 COONa2 to 3% Na, down 3 VO down 3 from 1 to 3%, H: 2 ~ 87% O80, the electrolysis is: light metal based workpiece except oil, wash; electrolyte according to weight ratio will rise rapidly to the voltage modulation; 250 - 350V, and maintained 5 ~ 10s; then the anodic oxidation voltage rise to 200600V, temperature is 10 to 90 DEG C; light metals The base member is placed in electrolyte for electrolysis 10 - 60min. The invention has the advantages of improving the abrasion resistance and the bonding strength of the ceramic layer.
【技术实现步骤摘要】
本专利技术涉及一种轻金属表面微等离子体陶瓷涂层工艺,可使用在汽车工业、航天工业、船舶工业、光电科技工业、微机电工业、信息工业、医药工业、骨科移植、卫星通讯工业的耐腐蚀、耐磨耗、耐高温、耐高电压、镀膜硬度、镀膜厚度、毛边去除、尺寸精密度、金属疲劳强度、镀膜附着性等场合,属于陶瓷
技术介绍
传统陶瓷喷涂技术主要为陶瓷粉末等离子喷涂和陶瓷棒材热喷涂技术,这两项技术的主要原理都是采用将高温热熔解的陶瓷材料覆在基体材料上的方法,通过高温将陶瓷棒材或陶瓷粉料热融解,再经由压缩空气将融解后的液相陶瓷送至基材上,液相陶瓷体冷却硬化,从而被覆在基材上形成陶瓷涂层,由于此陶瓷层是外加涂层,因此涂层与基体材料的结合强度不是太好,容易在使用过程中产生涂层剥落现象,而且由于受限于喷涂过程中的热融解工艺,涂层表面光洁度较差,往往需要进行大强度的研磨加工来达到光洁度要求,但由于结合强度较差,因此在加工过程中因为表面压应力的作用,表面陶瓷涂层容易剥落;结合强度较好的硬质阳极氧化层如硬铬层由于硬度较低,在耐磨寿命上受到较大的限制,而且在生产过程中会产生比较严重的重金属离子环境污染。
技术实现思路
本专利技术的目的是专利技术一种提升耐磨性能及陶瓷层结合强度高的轻金属表面微等离子体陶瓷涂层工艺。为实现以上目的,本专利技术的技术方案是提供一种轻金属表面微等离子体陶瓷涂层工艺,其特征在于,用电解的方法使氧化膜层在基材表面生长,其电解液由以下重量配比的原料制成碱性盐溶液 5~10%Na2O24~6% NaF 0.5~1%CH3COONa2~3%Na3VO31~3%H2O 80~87%所述的碱性盐溶液可以为硅酸盐、磷酸盐、硼酸盐等;所述的溶液pH为11~13,温度为20~50℃;所述的阴极材料为不锈钢板。一种轻金属表面微等离子体陶瓷涂层工艺,其特征在于,其电解方式为(1)将轻金属基工件除油,洗净;(2)按重量配比调制电解液;(3)将电压迅速上升至250-350V,并保持5~10s;(4)然后将阳极氧化电压上升至200-600V,温度为10~90℃;(5)将轻金属基工件放在电解液中电解10-60min。一种用于轻金属表面微等离子体陶瓷涂层工艺的微弧氧化设备,其特征在于,由外电解筒、内电解筒、循环冷却水出口、管道、控制电源、循环冷却水进口组成,内电解筒置于外电解筒里,在外电解筒和内电解筒之间置有循环冷却水,循环冷却水出口设于外电解筒的上端,循环冷却水进口设于外电解筒的下端,通有压缩空气的管道设于内电解筒里,控制电源设于外电解筒一边的上方,与轻金属基工件连接。本专利技术是根据陶瓷制作的原理来进行,首先在金属基体上生成氧化膜无机材料层,由于此氧化膜层的微观结构为不稳定型,因此需要通过高温煅烧将不稳定的晶型结构转变成稳定的晶型结构,从而具备无机材料的良好性能。本专利技术根据化学原理促进基材表面氧化反应,生成氧化膜层,即,再利用电弧放电原理,在一定电流密度下,致使在工件表面出现电晕、辉光、微弧放电,甚至火花斑,由此产生的瞬间高温将不稳定的氧化膜层煅烧生成稳定的氧化膜层,由于此氧化膜层并非外加,而是在基材表面生长,因此陶瓷膜层与基材之间的结合力非常好。本专利技术经过微等离子体氧化处理后,表面性能除了具有良好的整体韧性、耐腐蚀性、耐磨性外,还具有功能陶瓷的一些特性,如磁电屏蔽能力、特殊的热导性、抗积碳特性及良好的绝缘性等。本专利技术的优点是1)生产过程中不产生环境污染,没有重金属或粉尘产生;2)生产效率高,生产成本较传统的陶瓷涂层技术低一半以上;3)陶瓷层结合强度高,避免传统陶瓷涂层所出现的剥落现象;4)陶瓷层物理化学性能好;5)陶瓷层有一定的空隙度,作为发动机缸套可以起到储油的效果,作为生物医学来说,可以有效的作为负载材料,用于结合生物生长。6)工艺稳定、可靠。7)设备简单,反应在常温下进行,操作方便,易于掌握。附图说明图1为用于轻金属表面微等离子体陶瓷涂层工艺的微弧氧化设备结构示意图。具体实施例方式以下结合附图和实施例对本专利技术作进一步说明。实施例如图1所示,为用于轻金属表面微等离子体陶瓷涂层工艺的微弧氧化设备结构示意图,所述的用于轻金属表面微等离子体陶瓷涂层工艺的微弧氧化设备,其特征在于,由外电解筒1、内电解筒2、循环冷却水出口3、管道4、控制电源5、循环冷却水进口6组成,内电解筒2装在外电解筒1里,在外电解筒1和内电解筒2之间通有循环冷却水,循环冷却水出口3设于外电解筒1的上端,循环冷却水进口6设于外电解筒1的下端,通有压缩空气的管道4安置在内电解筒2里,控制电源5设于外电解筒1一边的上方,与轻金属基工件7连接,内电解筒2里放入电解液,电解液由以下重量配比的原料制成碱性盐溶液选K2SiO37份、Na2O25份、NaF0.7份、CH3COONa 2.3份、Na3VO32份、H2O 83份,所述的溶液pH为11~13,温度为50℃;所述的阴极材料为不锈钢板。轻金属表面微等离子体陶瓷涂层工艺,其特征在于,其电解方式为将轻金属基工件除油,洗净;按重量配比调制电解液;将电压迅速上升至300V,并保持7s;然后将阳极氧化电压上升至450V,温度为50℃;将轻金属基工件放在电解液中电解45min。微弧氧化电解液是获到合格膜层的技术关键。不同的电解液成分及氧化工艺参数,所得膜层的性质也不同。微弧氧化电解液多采用含有一定金属或非金属氧化物碱性盐溶液,可以是硅酸盐、磷酸盐、硼酸盐等,其在溶液中的存在形式最好是胶体状态,溶液的pH范围一般在11~13之间。在相同的微弧电解电压下,电解质浓度越大,成膜速度就越快,溶液温度上升越慢,反之,成膜速度较慢,溶液温度上升较快。微弧氧化电压和电流密度的控制对获取合格膜层同样至关重要。不同的铝基材料和不同的氧化电解液,具有不同的微弧放电击穿电压,击穿电压为工件表面刚刚产生微弧放电的电解电压,微弧氧化电压一般控制在大于击穿电压几十至上百伏的条件进行。氧化电压不同,所形成的陶瓷膜性能、表面状态和膜厚不同,根据对膜层性能的要求和不同的工艺条件,微弧氧化电压可在200~600V范围内变化。微弧氧化可采用控制电压法或控制电流法进行,控制电压进行微弧氧化时,电压值一般分段控制,即先在一定的阳极电压下使铝基表面形成一定厚度的绝缘氧化膜层;然后增加电压至一定值进行微弧氧化。当微弧氧化电压刚刚达到控制值时,通过的氧化电流一般都较大,可达10A/dm2左右,随着氧化时间的延长,陶瓷氧化膜不断形成与完善,氧化电流逐渐减小,最后小于1A/dm2。氧化电压的波形对膜层性能有一定影响,可采用直流、锯齿或方波等电压波形。采用控制电流法较控制电压法工艺操作上更为方便,控制电流法的电流密度一般为2~8A/dm2。控制电流氧化时,氧化电压开始上升较快,达到微弧放电时,电压上升缓慢,随着膜的形成,氧化电压又较快上升,最后维持在一较高的电解电压下。微弧氧化电解液的温度允许范围较宽,可在10~90℃条件下进行。温度越高,工件与溶液界面的水气化越厉害,膜的形成速度越快,但其粗糙度也随之增加。同时温度越高,电解液蒸发也越快,所以微弧氧化电解液的温度一般控制在20~60℃范围。由于微弧氧化的大部分能量以热能的形式释放,其氧化液的温度上升较常规铝阳极氧化快,故微弧氧化过程须配备容量较大的热交换制本文档来自技高网...
【技术保护点】
一种轻金属表面微等离子体陶瓷涂层工艺,其特征在于,用电解的方法使氧化膜层在基材表面生长,其电解液由以下重量配比的原料制成:碱性盐溶液5~10%Na↓[2]O↓[2]4~6%NaF0.5~1%CH↓ [3]COONa2~3%Na↓[3]VO↓[3]1~3%H↓[2]O80~87%。
【技术特征摘要】
【专利技术属性】
技术研发人员:李广仁,李戈,张万林,王俊,唐源生,戴端木,
申请(专利权)人:上海施迈尔精密陶瓷有限公司,
类型:发明
国别省市:31[中国|上海]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。