本发明专利技术属于表面电荷测量技术领域,特别是一种利用开尔文探针力显微镜技术的表面电荷测量方法。本发明专利技术利用开尔文探针力显微镜本身自带的光纤干涉仪通过测量干涉激光强度的变化来测量探针的偏移量,完成对针尖到样品的距离修正,利用针尖与样品的实际距离和静电力的关系最终获得可靠的表面电荷密度,对于材料与器件表面电荷的研究具有重要意义。
【技术实现步骤摘要】
本专利技术属于表面电荷测量
,特别是一种利用开尔文探针力显微镜技术的表面电荷测量方法。技术背景表面电荷测量方法是表面电荷研究的基础,准确测量表面电荷对于现在各类电子器件的微型化研究具有重要意义。目前,表面电荷测量方法有粉尘图法、静电探头法和基于泡克耳斯效应的光学测量法等。但以上方法都不能定量表面电荷,并且分辨率不高。现有技术中对于表面电荷的测量比较有效方法是开尔文探针力显微镜技术,该技术通过探测探针与样品表面之间的静电力信号来推算表面电荷密度。具体方法是利用开尔文探针力显微镜,测量探针与样品之间的静电力与扫描管移动距离的关系曲线(即“力-距离”曲线),再通过公式对“力-距离”曲线进行拟合,进而推算出样品的表面电荷密度。在文献《MappingandQuantifyingSurfaceChargesonClayNaoparticles》(JunLiu;RaviGaikwad;AharnishHande;SiddharthaDas.Langmuir2015,31,10469-10476)中,作者介绍了一种利用开尔文探针力显微镜技术对黏土材料表面电荷进行定量的方法,该方法的步骤简介如下:1)将待测样品固定在开尔文探针力显微镜的样品台上,调整好仪器各项参数;2)在探针与样品之间施加交流电压,使探针及其悬臂发生谐振,将探针移动到样品待测区域,测量探针振动频率与扫描管移动距离的关系曲线;3)通过公式对关系曲线进行拟合得到样品表面电荷密度σ。上述表面电荷测量方法能够实现纳米尺度的表面电荷定量测量。但是,在探针与样品距离小于50nm的时候,范德华力、静电力等作用力对探针的影响会导致探针悬臂发生形变,此时,实际的“力-距离”距离不等于扫描管移动的距离,导致通过拟合“力-距离”曲线提取表面电荷密度的方法存在较大误差。因此,现有技术中利用开尔文探针力显微镜技术测量表面电荷的方法由于实际的“力-距离”中的距离不等于扫描管移动的距离,导致表面电荷测量存在误差较大,存在不能准确测量表面电荷的缺点。
技术实现思路
本专利技术的目的是提供一种利用开尔文探针力显微镜技术准确测量表面电荷的测量方法。为解决上述技术问题,本专利技术采用的技术方案是一种表面电荷测量方法,包括如下步骤:1)将待测样品固定在开尔文探针力显微镜的样品台上,激光器发出波长为λ的激光,在压电片上施加直流电压Vdc,使得探针垂直移动,移动距离大于激光波长λ;同时,记录干涉激光强度与探针移动距离的关系,通过干涉激光强度的最大值Imax与最小值Imin,计算得到干涉仪测量探针偏移的灵敏度2)在探针与样品之间施加交流电压,使探针及其悬臂发生谐振,将探针移动到样品待测点的上方,扫描管向探针方向移动,利用锁相放大器监测探针的振动幅度R和相位θ,得到探针振动幅度R与扫描管移动距离Z的关系曲线、相位θ与扫描管移动距离Z的关系曲线,将振动幅度R和相位θ输出到计算机;同时监测干涉激光强度I,初始位置的干涉激光强度为I0,得到干涉激光强度与扫描管移动距离Z的关系曲线;3)通过计算机采集到的相位θ与振动幅度R,用探针在初始位置的幅度值归一化计算得到归一化振幅值RN,然后计算得到A=cosθ/RN;4)通过扫描管移动过程中干涉激光强度的变化值ΔI=I-I0,计算悬臂的形变量ΔZ=D×ΔI,修正获得“针尖-样品”的实际距离Z*=Z-ΔZ,得到A-Z*曲线关系;5)通过公式对A-Z*力曲线进行拟合,得到M、B的值,M,B为常量;6)计算得到表面电荷密度:其中S=π×r2,r为探针尖端半径;k为针尖弹性系数,ε0为真空介电常数。为了解决探针偏移而带来的“针尖-样品”距离存在偏差的问题,获得可靠的表面电荷密度数据,本专利技术利用开尔文探针力显微镜本身自带的光纤干涉仪测量干涉激光强度的变化来得到探针的偏移量,完成对针尖到样品的距离修正,利用“针尖-样品”的实际距离和静电力的关系最终获得可靠的表面电荷密度。附图说明图1是“针尖-样品”距离的示意图;图2是开尔文探针力显微镜测量表面电荷的系统结构示意图;图3是干涉激光强度与探针偏移量的关系曲线;图4是针尖靠近样品过程中探针偏移量与扫描管移动距离的关系曲线;图5是“针尖-样品”距离修正前后的力-距离曲线及其相应的拟合曲线。具体实施方式下面结合附图和实例对本专利技术进行进一步说明:本实施例中,所用的导电探针弹性系数k=2.18N/m,共振频率为75kHz;S=1×10-15m2;真空介电常数ε0=8.85×10-12;待测样品为SiO2,通过图2所示测试系统,具体测量步骤如下:将SiO2样品固定在开尔文探针力显微镜的样品台上,激光器发出40uw的激光,在压电片上施加直流电压Vdc=3V,使得探针垂直移动,同时记录干涉激光强度与移动距离的关系,如图3所示,由干涉激光强度的最大值Imax与最小值Imin计算得到干涉仪测量到的探针偏移灵敏度D=142.1nm/V;在探针与样品之间施加交流电压,使探针及其悬臂发生谐振,将探针移动到样品待测点的上方,扫描管向探针方向移动,利用锁相放大器监测探针的振动幅度R和相位θ,得到探针振动幅度R与扫描管移动距离Z的关系曲线、相位θ与扫描管移动距离Z的关系曲线,将振动幅度R和相位θ信号输出到计算机;同时监测干涉激光强度I,将初始位置的干涉激光强度记为I0,得到监测干涉激光强度与扫描管移动距离Z的关系曲线。通过计算机采集到的相位θ与振动幅度R,用探针在初始位置的幅度值归一化计算得到归一化振幅值RN,然后计算得到力A=cosθ/RN;此时可得到A-Z的曲线;通过探针靠近样品表面过程中干涉激光强度的变化值ΔI=I-I0,计算悬臂的形变量ΔZ=142.1×ΔI,得到如图4所示探针偏移与扫描管移动距离的关系,进而求得“针尖-样品”的真实距离Z*=Z-ΔZ,得到如图5所示A-Z*曲线关系;通过公式对修正前后的力曲线分别拟合,得到M、B的值;M,B为常量;再将M、B代入公式计算得到表面电荷密度;由图5的拟合情况可知,修正前计算得到的表面电荷密度σ为5.0uC·cm-2,修正后的表面电荷密度σ为4.4uC·cm-2。通过比较发现,“针尖-样品”距离修正之前所得到的表面电荷密度值与修正过后的值比较增加了10%。本文档来自技高网...
【技术保护点】
一种表面电荷测量方法,其特征在于包括如下步骤:1)将待测样品固定在开尔文探针力显微镜的样品台上,激光器发出波长为λ的激光,在压电片上施加直流电压Vdc,使得探针垂直移动,移动距离大于激光波长λ;同时,记录干涉激光强度与探针移动距离的关系,通过干涉激光强度的最大值Imax与最小值Imin,计算得到干涉仪测量探针偏移的灵敏度2)在探针与样品之间施加交流电压,使探针及其悬臂发生谐振,将探针移动到样品待测点的上方,扫描管向探针方向移动,利用锁相放大器监测探针的振动幅度R和相位θ,得到探针振动幅度R与扫描管移动距离Z的关系曲线、相位θ与扫描管移动距离Z的关系曲线,将振动幅度R和相位θ输出到计算机;同时监测干涉激光强度I,初始位置的干涉激光强度为I0,得到干涉激光强度与扫描管移动距离Z的关系曲线;3)通过计算机采集到的相位θ与振动幅度R,用探针在初始位置的幅度值归一化计算得到归一化振幅值RN,然后计算得到A=cosθ/RN;4)通过扫描管移动过程中干涉激光强度的变化值ΔI=I‑I0,计算悬臂的形变量ΔZ=D×ΔI,修正获得“针尖‑样品”的实际距离Z*=Z‑ΔZ,得到A‑Z*曲线关系;5)通过公式对A‑Z*力曲线进行拟合,得到M、B的值,M,B为常量;6)计算得到表面电荷密度:其中S=π×r2,r为探针尖端半径;k为针尖弹性系数,ε0为真空介电常数。...
【技术特征摘要】
1.一种表面电荷测量方法,其特征在于包括如下步骤:1)将待测样品固定在开尔文探针力显微镜的样品台上,激光器发出波长为λ的激光,在压电片上施加直流电压Vdc,使得探针垂直移动,移动距离大于激光波长λ;同时,记录干涉激光强度与探针移动距离的关系,通过干涉激光强度的最大值Imax与最小值Imin,计算得到干涉仪测量探针偏移的灵敏度2)在探针与样品之间施加交流电压,使探针及其悬臂发生谐振,将探针移动到样品待测点的上方,扫描管向探针方向移动,利用锁相放大器监测探针的振动幅度R和相位θ,得到探针振动幅度R与扫描管移动距离Z的关系曲线、相位θ与扫描管移动距离Z的关系曲线,将振动幅度R和相...
【专利技术属性】
技术研发人员:曾慧中,冯杰,何月,张佳玉,张文旭,张万里,
申请(专利权)人:电子科技大学,
类型:发明
国别省市:四川;51
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。