一种利用纤芯失配干涉结构测量磁场的方法技术

技术编号:14637720 阅读:110 留言:0更新日期:2017-02-15 11:55
本发明专利技术提供了一种利用纤芯失配干涉结构测量磁场的方法,所述方法包括如下步骤:a)搭建纤芯错位熔接干涉结构,所述纤芯错位熔接干涉结构包括依次连接的泵浦源,波分复用器,增益光纤,第一单模光纤,第二单模光纤,第三单模光纤和光谱分析仪;b)对第一单模光纤,第二单模光纤和第三单模光纤进行光纤错位熔接;c)测量待测温控装置的外加磁场:将第一单模光纤、第二单模光纤和第三单模光纤与温控装置组合为一体,在外加磁场的条件下对传感器实现拉伸、弯曲、振动或挤压,引起纤芯失配干涉仪偏振态发生相应变化,利用下述公式,确定传感器所受到的磁场:Y=aX‑b,其中X为磁场浓度,Y为变化波长,a,b为常数。

【技术实现步骤摘要】

本专利技术涉及光通信领域,具体涉及一种利用纤芯失配干涉结构对磁场进行测量的方法。
技术介绍
全光纤化的传感器具有结构紧凑、使用寿命长、对测试量敏感、传输信道多等优势广泛地应用于光纤传感、光纤通信、光学加工等领域。通过光纤端面微加工技术或搭建具有干涉结构的全光纤传感器,在泵浦源作用下,输出具有梳状谱图样的干涉谱曲线。细芯光纤马赫-曾德光纤传感器结构简单且易于实现,该结构由一段细芯光纤熔接在两段芯径相对较粗的掺杂稀土光纤中,掺杂稀土光纤也被用作为传感器的增益介质。随着光纤传感技术的发展,测量磁场的光纤传感器有很多种,2011年范林勇等人设计了一种基于双芯光纤的马赫-曾德干涉仪,应用于磁场和应变量的测量,干涉条纹衬幅比约为10dBm,条纹间隔约为2nm。2013年邹卉等人用两支3dB耦合器制成马赫-曾德干涉系统,结合双芯光纤,构成双级结构的马赫-曾德干涉仪,条纹衬幅比约为30dBm。光纤马赫-曾德干涉仪具有结构简单、条纹衬比度高、梳状谱密集等优势,常被用于光纤传感领域。但这些光纤传感器都有缺点,在实际运用中受到限制。
技术实现思路
为了解决上述问题,本专利技术提供了一种利用纤芯失配干涉结构测量磁场的方法,所述方法包括如下步骤:a)搭建纤芯错位熔接干涉结构,所述纤芯错位熔接干涉结构包括依次连接的泵浦源,波分复用器,增益光纤,第一单模光纤,第二单模光纤,第三单模光纤和光谱分析仪;b)对第一单模光纤,第二单模光纤和第三单模光纤进行光纤错位熔接;c)测量待测温控装置的外加磁场:将第一单模光纤、第二单模光纤和第三单模光纤与温控装置组合为一体,在外加磁场的条件下对传感器实现拉伸、弯曲、振动或挤压,引起纤芯失配干涉仪偏振态发生相应变化,利用下述公式,确定传感器所受到的磁场:Y=aX-b,其中X为磁场浓度,Y为变化波长,a,b为常数。优选地,所述步骤c)中的计算是根据已标定的所述纤芯失配结构的波长漂移和感受器所受到的磁场之间的关系曲线,读取所测量的纤芯失配结构的波长所对应的外加磁场。优选地,通过将纤芯失配结构置于已知的磁场中,来标定所述纤芯失配结构的波长漂移与磁场强度之间的关系曲线。优选地,所述第一单模光纤的输出端与第二单模光纤的输入端通过错位熔接结构连接,第二单模光纤的输出端与第三单模光纤的输入端通过错位熔接结构连接。优选地,所述步骤b)中单模光纤的径向错位距离为3~4μm。优选地,所述单模光纤的径向错位距离为3.6μm。优选地,所述所述第二单模光纤的长度为9cm。应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本专利技术所要求保护内容的限制。附图说明参考随附的附图,本专利技术更多的目的、功能和优点将通过本专利技术实施方式的如下描述得以阐明,其中:图1为纤芯失配结构的示意图;图2根据本专利技术的测量磁场的纤芯失配干涉仪的示意图;图3为单模光纤错位熔接的影像图;图4是单模光纤不同错位量的透射谱图;图5为标定过程中,光纤梳状谱发生红移或蓝移的示意图;图6为标定过程中,光纤梳状谱随磁场强度的变化曲线。具体实施方式纤芯失配就是光纤熔接时纤芯不匹配,根据纤芯失配原理,纤芯失配干涉结构是一种结构特殊的马赫-曾德干涉仪。在单模-多模-单模(Singlemode-Multimode-Singlemode,SMS)结构(如图1所示)中输入端单模光纤将入射光耦合入纤芯错位的单模光纤中,多模光纤调制后将入射光经由输出端单模光纤引出,光波模式沿光导纤维传输,在传输方向上会出现光强随多模光纤长度的改变而周期性变化的现象,甚至在多模光纤内出现与入射光场几乎相同的光场分布,这就是多模光纤中的模式干涉效应,也叫模间干涉,由于在一根光纤就能实现多种模式之间的干涉,简化了光路,使结构更加紧凑,而且损耗低、不受外界干扰,具有很好的发展前景。图2示出了根据本专利技术的利用纤芯失配干涉结构测量磁场的纤芯失配干涉结构的示意图,搭建如图2所示的纤芯失配干涉结构,包括依次连接的泵浦源201,波分复用器(WDM)202,增益光纤203,第一单模光纤(SMF)204,第二单模光纤205,第三单模光纤206和光谱分析仪207。泵浦源201的输出端依次连接波分复用器(WDM)202和增益光纤203,增益光纤203与第一单模光纤204的输入端连接,第一单模光纤204的输出端与第二单模光纤205的输入端通过错位熔接结构连接,第二单模光纤205的输出端与第三单模光纤206的输入端通过错位熔接结构连接,第三单模光纤206的输出端与光谱分析仪207连接。根据本专利技术的利用纤芯失配干涉结构测量磁场的纤芯失配干涉结构的工作原理如下:首先,对第一单模光纤204,第二单模光纤205和第三单模光纤206进行光纤错位熔接。图3为单模光纤错位熔接的影像图。光纤错位熔接时,错位量是按照由小到大的顺序逐步调整的,图4是不同错位量的透射谱,观察透射谱发现,当错位量过小时,没有明显的模间干涉现象产生,如图4a所示,这是因为传输光由第一单模光纤耦合进入第二单模光纤(长度为9cm)时,大部分的光通过纤芯传播,只有很小一部分耦合到了包层中,在第三单模光纤中相遇时干涉效果不明显;当错位量合适时,光纤中的模式就会发生变化,模式变化导致产生不同的干涉结果,随着错位量的增加,干涉现象逐渐明显;当错位量过大时,由于光纤熔接处的损耗很大,模间干涉现象同样不明显,如图4c所示。本专利技术中所采用的光纤的纤芯/包层的尺寸为10/125μm,错位较少时,由前端纤芯注入后端包层中的光较弱,干涉现象不明显;错位较大时,前端纤芯注入后端包层中的光较强,但纤芯中光较弱,干涉现象受到影响;径向错位距离为3~4μm时,前端纤芯注入后端包层和纤芯中的光强度相近,因此有最佳的效果,图如4b所示。当第一单模光纤和第二单模光纤熔接错位距离与第二单模光纤和第三单模光纤的熔接错位距离相同时获得的实验效果最好。其次,对纤芯失配干涉结构进行磁场标定,标定过程如下:将第一单模光纤、第二单模光纤和第三单模光纤与温控装置组合为一体,在外加磁场的条件下对传感器实现拉伸、弯曲、振动或挤压,引起干涉仪偏振态发生相应变化,从而导致梳状谱发生红移或蓝移(如图5所示),随着拉伸长度的增加,即轴向微应力增大,梳状滤波器的传输谱向短波方向移动。通过逐渐增加磁场强度的大小,记录梳状谱移动的长度,得到梳状谱随该磁场强度的变化曲线。其示意图如图6所示。最终,通过谱线漂移与磁场之间的关系曲线对外加磁场进行测量。利用下述磁场标定曲线,确定传感器所受到的磁场。Y=aX-b,其中X为磁场浓度,Y为变化波长,a,b为常数。结合这里披露的本专利技术的说明和实践,本专利技术的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本专利技术的真正范围和主旨均由权利要求所限定。本文档来自技高网...
一种利用纤芯失配干涉结构测量磁场的方法

【技术保护点】
一种利用纤芯失配干涉结构测量磁场的方法,所述方法包括如下步骤:a)搭建纤芯错位熔接干涉结构,所述纤芯错位熔接干涉结构包括依次连接的泵浦源,波分复用器,增益光纤,第一单模光纤,第二单模光纤,第三单模光纤和光谱分析仪;b)对第一单模光纤,第二单模光纤和第三单模光纤进行光纤错位熔接;c)测量待测温控装置的外加磁场:将第一单模光纤、第二单模光纤和第三单模光纤与温控装置组合为一体,在外加磁场的条件下对传感器实现拉伸、弯曲、振动或挤压,引起纤芯失配干涉仪偏振态发生相应变化,利用下述公式,确定传感器所受到的磁场:Y=aX‑b,其中X为磁场浓度,Y为变化波长,a,b为常数。

【技术特征摘要】
1.一种利用纤芯失配干涉结构测量磁场的方法,所述方法包括如下步骤:a)搭建纤芯错位熔接干涉结构,所述纤芯错位熔接干涉结构包括依次连接的泵浦源,波分复用器,增益光纤,第一单模光纤,第二单模光纤,第三单模光纤和光谱分析仪;b)对第一单模光纤,第二单模光纤和第三单模光纤进行光纤错位熔接;c)测量待测温控装置的外加磁场:将第一单模光纤、第二单模光纤和第三单模光纤与温控装置组合为一体,在外加磁场的条件下对传感器实现拉伸、弯曲、振动或挤压,引起纤芯失配干涉仪偏振态发生相应变化,利用下述公式,确定传感器所受到的磁场:Y=aX-b,其中X为磁场浓度,Y为变化波长,a,b为常数。2.根据权利要求1所述的方法,其中所述步骤c)中的计算是根据已标...

【专利技术属性】
技术研发人员:何巍祝连庆娄小平董明利庄炜张钰民李红
申请(专利权)人:北京信息科技大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1