本发明专利技术涉及一种航空器轨迹预测方法由空中交通管制系统实施,所述空中交通管制系统包括数据通信模块、监视数据融合模块、机载终端模块、管制终端模块,其中监视数据融合模块用于实现空管雷达监视数据与自动相关监视数据的融合,为管制终端模块提供实时航迹信息;管制终端模块包括飞行前无冲突4D航迹生成、飞行中短期4D航迹生成这2个子模块;上述系统的航空器轨迹预测方法,依靠管制终端模块,处理飞行计划数据并利用隐马尔科夫模型生成4D航迹,实现空域交通状况潜在的交通冲突的分析。本发明专利技术可有效提高空中交通的安全性。
【技术实现步骤摘要】
本申请是申请号为:201510007935.7,专利技术创造名称为《空中交通管制系统的航空器轨迹预测方法》,申请日为:2015年1月7日的专利技术专利申请的分案申请。
本专利技术涉及一种空中交通管制系统及方法,尤其涉及一种基于4D航迹运行的空中交通管制系统对航空器轨迹进行预测的方法。
技术介绍
随着全球航空运输业快速发展与空域资源有限矛盾的日益突出,在空中交通流密集的复杂空域,仍然采用飞行计划结合间隔调配的空中交通管理方式逐渐显示出其落后性,具体表现在:(1)飞行计划并未为航空器配置精确的空管间隔,容易造成交通流战术管理中的拥挤,降低空域安全性;(2)以飞行计划为中心的空管自动化系统对飞行剖面的推算和航迹预测精度差,造成冲突化解能力差;(3)空中交通管制工作仍然侧重于保持单个航空器之间的安全间隔,很难上升到对交通流进行战略性管理。对于航空器轨迹的预测显得尤为重要。4D航迹是以空间和时间形式,对某一航空器航迹中的各点空间位置(经度、纬度和高度)和时间的精确描述,基于航迹的运行是指在4D航迹的航路点上使用“控制到达时间”,即控制航空器通过特定航路点的“时间窗”。在高密度空域把基于4D航迹的运行(TrajectorybasedOperation)作为基本运行机制之一,是未来对大流量、高密度、小间隔条件下空域实施管理的一种有效手段,可以显著地减少航空器航迹的不确定性,提高空域和机场资源的安全性与利用率。基于航迹运行的空中交通运行方式需要在战略层面上对单航空器飞行航迹进行推算和优化,对多航空器构成的交通流实施协同和调整;在预战术层面上通过修正交通流中个别航空器的航迹以解决拥塞问题,并保证该交通流中所有航空器的运行效率;而在战术层面上预测冲突和优化解脱方案,则非常依赖于能否准确地对航空器的轨迹进行预测,目前均不能准确实时地对航空器的轨迹进行预测,实时性上做的尤为的差。
技术实现思路
本专利技术要解决的技术问题是在于克服现有技术的不足,提供一种基于4D航迹运行的空中交通管制系统的航空器轨迹预测方法,可有效、准确、实时地预测航空器的轨迹。实现本专利技术目的的技术方案是提供一种航空器轨迹预测方法由空中交通管制系统实施,所述空中交通管制系统包括机载终端模块、数据通信模块、监视数据融合模块以及管制终端模块;监视数据融合模块用于实现空管雷达监视数据与自动相关监视数据的融合,为管制终端模块提供实时航迹信息;所述管制终端模块包括以下子模块:飞行前无冲突4D航迹生成模块,根据飞行计划和世界区域预报系统的预报数据,建立航空器动力学模型,然后依据飞行冲突耦合点建立航迹冲突预调配理论模型,生成航空器无冲突4D航迹;飞行中短期4D航迹生成模块,依据监视数据融合模块提供的实时航迹信息,利用隐马尔科夫模型,推测未来一定时间窗内的航空器4D轨迹;所述空中交通管制系统的航空器轨迹预测方法包括如下几个步骤:步骤A、飞行前无冲突4D航迹生成模块根据飞行计划和世界区域预报系统的预报数据,建立航空器动力学模型,并依据飞行冲突耦合点建立航迹冲突预调配理论模型,生成航空器无冲突4D航迹;步骤B、监视数据融合模块将空管雷达监视数据与自动相关监视数据进行融合,生成航空器实时航迹信息并提供给管制终端模块;管制终端模块中的飞行中短期4D航迹生成模块依据航空器实时航迹信息和历史航迹信息推测未来一定时间窗内的航空器4D轨迹;所述依据航空器实时航迹信息和历史航迹信息推测未来一定时间窗内的航空器4D轨迹的具体实施过程如下:步骤B6、对航空器轨迹数据预处理,依据所获取的航空器原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的航空器离散位置序列△x=[△x1,△x2,...,△xn-1]和△y=[△y1,△y2,…,△yn-1],其中△xb=xb+1-xb,△yb=yb+1-yb(b=1,2,...,n-1);步骤B7、对航空器轨迹数据聚类,对处理后新的航空器离散二维位置序列△x和△y,通过设定聚类个数M',采用K-means聚类算法分别对其进行聚类;步骤B8、对聚类后的航空器轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的航空器运行轨迹数据△x和△y视为隐马尔科夫过程的显观测值,通过设定隐状态数目N'和参数更新时段ζ',依据最近的T'个位置观测值并采用B-W算法滚动获取最新隐马尔科夫模型参数λ';步骤B9、依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;步骤B10、通过设定预测时域h',基于航空器当前时刻的隐状态q,获取未来时段航空器的位置预测值O。进一步的,步骤B中,所述聚类个数M'的值为4,隐状态数目N'的值为3,参数更新时段ζ'为30秒,T'为10,预测时域h'为300秒。进一步的,步骤B的B8具体是指:由于所获得的航迹序列数据长度是动态变化的,为了实时跟踪航空器航迹的状态变化,有必要在初始航迹隐马尔科夫模型参数λ'=(π,A,B)的基础上对其重新调整,以便更精确地推测航空器在未来某时刻的位置;每隔时段ζ',依据最新获得的T'个观测值(o1,o2,...,oT')对航迹隐马尔科夫模型参数λ'=(π,A,B)进行重新估计;步骤B的B10具体是指:每隔时段根据最新获得的隐马尔科夫模型参数λ'=(π,A,B)和最近H个历史观测值(o1,o2,...,oH),基于航空器当前时刻的隐状态q,通过设定预测时域h',在时刻t获取航空器在未来时段h'的位置预测值O。更进一步的,时段为4秒。进一步的,所述步骤A的航空器无冲突4D航迹按照以下方法生成:步骤A1、进行航空器状态转移建模,根据飞行计划中航空器的飞行高度剖面,建立单个航空器在不同航段转移的Petri网模型:E=(g,G,Pre,Post,m)为航空器阶段转移模型,其中g表示飞行航段,G表示垂直剖面中飞行状态参数的转换点,Pre和Post分别表示航段和航路点的前后向连接关系,表示航空器所处的飞行阶段;步骤A2、建立航空器全飞行剖面混杂系统模型如下,vH=κ(vCAS,Mach,hp,tLOC),vGS=μ(vCAS,Mach,hp,tLOC,vWS,α),其中vCAS为校正空速,Mach为马赫数,hp为气压高度,α为风向预报与航路的夹角,vWS为风速预报值,tLOC为温度预报值,vH为高度变化率,vGS为地速;步骤A3、采用混杂系统仿真的方式推测求解航迹:采用将时间细分的方法,利用状态连续变化的特性递推求解任意时刻航空器在某一飞行阶段距参考点的航程和高度其中J0为初始时刻航空器距参考点的航程,△τ为时间窗的数值,J(τ)为τ时刻航空器距参考点的航程,h0为初始时刻航空器距参考点的高度,h(τ)为τ时刻航空器距参考点的高度,由此可以推测得到单航空器的4D航迹;步骤A4、对多航空器耦合模型实施无冲突调配:根据两航空器预达交叉点的时间,按照空中交通管制原则,对交叉点附近不满足间隔要求的航空器4D航迹进行二次规划,得到无冲突4D航迹。进一步的,所述步骤B中监视数据融合模块将空管雷达监视数据与自动相关监视数据进行融合,生成航空器实时航迹信息,具体按照以下方法:步骤B1、将坐标单位和时间统一;步骤B2、采用最邻近数据关联算法将属于同一个目标本文档来自技高网...
【技术保护点】
一种航空器轨迹预测方法由空中交通管制系统实施,所述空中交通管制系统包括机载终端模块、数据通信模块、监视数据融合模块以及管制终端模块;监视数据融合模块用于实现空管雷达监视数据与自动相关监视数据的融合,为管制终端模块提供实时航迹信息;其特征在于:所述管制终端模块包括以下子模块:飞行前无冲突4D航迹生成模块,根据飞行计划和世界区域预报系统的预报数据,建立航空器动力学模型,然后依据飞行冲突耦合点建立航迹冲突预调配理论模型,生成航空器无冲突4D航迹;飞行中短期4D航迹生成模块,依据监视数据融合模块提供的实时航迹信息,利用隐马尔科夫模型,推测未来一定时间窗内的航空器4D轨迹;所述空中交通管制系统的航空器轨迹预测方法包括如下几个步骤:步骤A、飞行前无冲突4D航迹生成模块根据飞行计划和世界区域预报系统的预报数据,建立航空器动力学模型,并依据飞行冲突耦合点建立航迹冲突预调配理论模型,生成航空器无冲突4D航迹;步骤B、监视数据融合模块将空管雷达监视数据与自动相关监视数据进行融合,生成航空器实时航迹信息并提供给管制终端模块;管制终端模块中的飞行中短期4D航迹生成模块依据航空器实时航迹信息和历史航迹信息推测未来一定时间窗内的航空器4D轨迹;所述依据航空器实时航迹信息和历史航迹信息推测未来一定时间窗内的航空器4D轨迹的具体实施过程如下:步骤B6、对航空器轨迹数据预处理,依据所获取的航空器原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的航空器离散位置序列Δx=[Δx1,Δx2,...,Δxn‑1]和Δy=[Δy1,Δy2,...,Δyn‑1],其中Δxb=xb+1‑xb,Δyb=yb+1‑yb,b=1,2,...,n‑1;步骤B7、对航空器轨迹数据聚类,对处理后新的航空器离散二维位置序列Δx和Δy,通过设定聚类个数M',采用K‑means聚类算法分别对其进行聚类;步骤B8、对聚类后的航空器轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的航空器运行轨迹数据Δx和Δy视为隐马尔科夫过程的显观测值,通过设定隐状态数目N'和参数更新时段ζ',依据最近的T'个位置观测值并采用B‑W算法滚动获取最新隐马尔科夫模型参数λ';步骤B9、依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;步骤B10、通过设定预测时域h',基于航空器当前时刻的隐状态q,获取未来时段航空器的位置预测值O;所述步骤A的航空器无冲突4D航迹按照以下方法生成:步骤A1、进行航空器状态转移建模,根据飞行计划中航空器的飞行高度剖面,建立单个航空器在不同航段转移的Petri网模型:E=(g,G,Pre,Post,m)为航空器阶段转移模型,其中g表示飞行航段,G表示垂直剖面中飞行状态参数的转换点,Pre和Post分别表示航段和航路点的前后向连接关系,表示航空器所处的飞行阶段;步骤A2、建立航空器全飞行剖面混杂系统模型如下,vH=κ(vCAS,Mach,hp,tLOC),vGS=μ(vCAS,Mach,hp,tLOC,vWS,α),其中vCAS为校正空速,Mach为马赫数,hp为气压高度,α为风向预报与航路的夹角,vWS为风速预报值,tLOC为温度预报值,vH为高度变化率,vGS为地速;步骤A3、采用混杂系统仿真的方式推测求解航迹:采用将时间细分的方法,利用状态连续变化的特性递推求解任意时刻航空器在某一飞行阶段距参考点的航程和高度其中J0为初始时刻航空器距参考点的航程,Δτ为时间窗的数值,J(τ)为τ时刻航空器距参考点的航程,h0为初始时刻航空器距参考点的高度,h(τ)为τ时刻航空器距参考点的高度,由此可以推测得到单航空器的4D航迹;步骤A4、对多航空器耦合模型实施无冲突调配:根据两航空器预达交叉点的时间,按照空中交通管制原则,对交叉点附近不满足间隔要求的航空器4D航迹进行二次规划,得到无冲突4D航迹。...
【技术特征摘要】
1.一种航空器轨迹预测方法由空中交通管制系统实施,所述空中交通管制系统包括机载终端模块、数据通信模块、监视数据融合模块以及管制终端模块;监视数据融合模块用于实现空管雷达监视数据与自动相关监视数据的融合,为管制终端模块提供实时航迹信息;其特征在于:所述管制终端模块包括以下子模块:飞行前无冲突4D航迹生成模块,根据飞行计划和世界区域预报系统的预报数据,建立航空器动力学模型,然后依据飞行冲突耦合点建立航迹冲突预调配理论模型,生成航空器无冲突4D航迹;飞行中短期4D航迹生成模块,依据监视数据融合模块提供的实时航迹信息,利用隐马尔科夫模型,推测未来一定时间窗内的航空器4D轨迹;所述空中交通管制系统的航空器轨迹预测方法包括如下几个步骤:步骤A、飞行前无冲突4D航迹生成模块根据飞行计划和世界区域预报系统的预报数据,建立航空器动力学模型,并依据飞行冲突耦合点建立航迹冲突预调配理论模型,生成航空器无冲突4D航迹;步骤B、监视数据融合模块将空管雷达监视数据与自动相关监视数据进行融合,生成航空器实时航迹信息并提供给管制终端模块;管制终端模块中的飞行中短期4D航迹生成模块依据航空器实时航迹信息和历史航迹信息推测未来一定时间窗内的航空器4D轨迹;所述依据航空器实时航迹信息和历史航迹信息推测未来一定时间窗内的航空器4D轨迹的具体实施过程如下:步骤B6、对航空器轨迹数据预处理,依据所获取的航空器原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的航空器离散位置序列Δx=[Δx1,Δx2,...,Δxn-1]和Δy=[Δy1,Δy2,...,Δyn-1],其中Δxb=xb+1-xb,Δyb=yb+1-yb,b=1,2,...,n-1;步骤B7、对航空器轨迹数据聚类,对处理后新的航空器离散二维位置序列Δx和Δy,通过设定聚类个数M',采用K-means聚类算法分别对其进行聚类;步骤B...
【专利技术属性】
技术研发人员:韩云祥,赵景波,李广军,
申请(专利权)人:江苏理工学院,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。