【技术实现步骤摘要】
本技术属于职业学校实训教具
,涉及一种实验装置,特别涉及一种铝电解石墨坩埚实验装置。
技术介绍
目前,铝电解行业相关研究课题主要针对解决工业现场某一实际问题及需求,其实验设备带有明确的指向性,并不适用于大专院校教学实训的需要。本技术旨在通过实验设备模拟铝电解槽基本参数的情况下,还原电解铝过程中的电化学反应,并通过计算机系统记录电压、电流、温度等主要参数供教学实训之用。
技术实现思路
本技术的目的是提供一种铝电解石墨坩埚实验装置,适用于大专院校教学实训的需要。为实现上述目的,本技术所采用的技术方案是:一种铝电解石墨坩埚实验装置,包括计算机、阳极导电杆、阴极导电杆、石墨阳极、石墨坩埚和壳体;壳体内设有加热炉,加热炉侧壁上设有炉门,加热炉底板上设有底部炉门的安装口,底部炉门安装于升降机构顶端,升降机构可驱动底部炉门上下往复移动;加热炉顶部设有阳极导电杆安装孔和阴极导电杆安装孔,加热炉顶部并排设有多个U形的第一硅碳棒,加热炉顶部并排设有数量与第一硅碳棒数量相同的U形的第二硅碳棒,第一硅碳棒下端和第二硅碳棒下端均位于加热炉的炉膛内,第一硅碳棒上端和第二硅碳棒上端均位于加热炉顶部与壳体顶部之间的空隙内;所有第一硅碳棒组成第一硅碳棒组,所有第二硅碳棒组成第二硅碳棒组;加热炉的侧壁上分别设有侧面观察管、加气管和热电偶,使用时,使石墨坩埚位于第一硅碳棒组和第二硅碳棒组之间,阴极导电杆穿入阴极导电杆安装孔内,阴极导电杆的下端与石墨坩埚相连接,阳极导电杆穿入阳极导电杆安装孔内,并安装石墨阳极,使得石墨阳极位于石墨坩埚内。 >本技术实验装置具有如下优点:1)通过实验的方法模拟工业现场设备内的电化学反应,就可以探究出不同配方的电解质在固定条件下的差异,以供配方及研究使用。2)通过自由调整阳极高度,了解电解电压和电解电流的不同变化,通过观察计算机记录到的不同曲线,丰富教学内容。3)通过理论计算,即当电解质中的铝离子含量低于某一数值后将引发阳极效应,可以知道阳极效应发生的大概时间。由于实验设备采用的电流较小,阳极效应发生时电压上升不会太高,电能浪费较少,又可多次设置条件研究阳极效应发生的条件,为生产实践提供一定的参考和指导。就可通过电解电压和电解电流直观的发现阳极效应发生时刻。这样通过前期的理论计算安排和后期的实验现象观察,起到很好的教学作用,同时实验数据也可为生产现场提供指导和参考数据。附图说明图1是本技术实验装置的示意图。图2是进行电解实验时石墨阳极放入熔融电解质中的示意图。图中:1.侧面观察管,2.加气管,3.第一硅碳棒,4.排气管,5.上部观察管,6.阳极导电杆,7.阴极导电杆,8.第二硅碳棒,9.石墨阳极,10.石墨坩埚,11.热电偶,12.底部炉门,13.升降机构,14.壳体,15.加热炉。具体实施方式下面结合附图和具体实施方式对本技术进行详细说明。如图1所示,本技术实验装置,包括计算机、阳极导电杆6、阴极导电杆7、石墨阳极9、石墨坩埚10和壳体14;壳体14内设有中空的耐火材料制成的加热炉15,加热炉15的侧壁上设有炉门,加热炉15的底板上设有底部炉门12的安装口,底部炉门12安装于升降机构13的顶端,该安装口与底部炉门12相适配,升降机构13可采用螺杆螺母副结构,升降机构13可驱动底部炉门12上下往复移动;加热炉15顶部设有阳极导电杆安装孔和阴极导电杆安装孔,加热炉15顶部设有与加热炉15炉膛相通的排气管4,排气管4的上端依次穿过加热炉15顶部和壳体14顶部伸出壳体14外;加热炉15顶部并排设有三个U形的第一硅碳棒3,加热炉15顶部并排设有三个U形的第二硅碳棒8,所有的第一硅碳棒3组成第一硅碳棒组,所有的第二硅碳棒8组成第二硅碳棒组;第一硅碳棒3下端和第二硅碳棒8下端均位于加热炉15的炉膛内,第一硅碳棒3上端和第二硅碳棒8上端均位于加热炉15顶部与壳体14顶部之间的空隙内。加热炉15的侧壁上分别设有侧面观察管1、加气管2和热电偶11,观察管1、加气管2和热电偶11均有一端伸入加热炉15的炉膛内,观察管1的另一端、加气管2的另一端和热电偶11的另一端均依次穿过加热炉15侧壁和壳体14侧壁伸出壳体14外。使用时,通过升降机构13使底部炉门12下降,然后,将石墨坩埚10放置于底部炉门12上,再通过升降机构13使底部炉门12上升并进入安装口内,与该安装口密闭配合,底部炉门12位于第一硅碳棒组和第二硅碳棒组之间;本技术实验装置用可升降的石墨阳极9和石墨坩埚10分别代替铝电解工业现场使用的阳极炭块和电解槽,并采用冰晶石——氧化铝熔盐电解法进行实验。同时,为了达到实验要求的温度,采用硅碳棒加热进行升温,不同于工业上的大电流启动加热。整个系统设计比生产现场电解槽成本大大降低,但又能达到同样效果;石墨阳极9可人工升降,方便实验时观察阳极位于不同高度时的数据波动情况。用本技术实验装置进行实验时:步骤1:取适量铝锭,使铝锭刚好铺满石墨坩埚10的底面,然后,从石墨坩埚10中取出铝锭,并称取这些铝锭的质量,记作M1,称量后将铝锭铺设于石墨坩埚10底部;再称取3000克电解质(该电解质中含质量百分比为10%左右的氧化铝,其余为冰晶石。后续步骤中不再添加氧化铝,是为了尽快观察到阳极效应,因为电解过程中将消耗氧化铝,通常氧化铝含量低于1.5%后将发生阳极效应),电解质的质量记作M2;步骤2:操作升降机构13,使底部炉门12下降,将石墨坩埚10放置于底部炉门12上的中央位置;操作升降机构13,使底部炉门12上升,至石墨坩埚10的顶部与炉膛底部齐平,打开加热炉15侧壁上的炉门,将步骤1中称取的电解质置于石墨坩埚10内;将阳极导电杆6由上部插入阳极导电杆安装孔内,使阳极导电杆6下端伸入到加热炉15的炉膛内,将石墨阳极9从加热炉15侧壁的炉门放入加热炉15的炉膛并旋紧于阳极导电杆6上,石墨阳极9可上下往复移动;操作升降机构13,使底部炉门12继续上升,直至底部炉门12完全闭合,将阴极导电杆7穿入阴极导电杆安装孔内,使阴极导电杆7的下端伸入加热炉15的炉膛内,并与石墨坩埚10相连接,使得石墨阳极9位于石墨坩埚10内,并不与石墨坩埚10相接触;将阳极导电杆6和阴极导电杆7分别与相应的电缆相连;连通加气管2和保护气发生器,将所有第一硅碳棒3和第二硅碳棒8均与电源相连接;将阳极导电杆6和阴极导电杆7分别与直流电源相连;步骤3:关闭加热炉15侧壁上的炉门,通过计算机设置控温参数、升温速率和开度(对应了加热电流的大小,其值最高不能超过50%);步骤4:点击控制柜上的启动按钮(主电路交流接触器吸合),通过硅碳棒进行加热,使加热炉15的炉膛以10~15℃/分钟的升温速率升温,当炉膛温度升至400℃时,通过加气管2向炉膛内输送流量50~150L/h的保护气体(氮气或氢气),以相同的升温速率将炉膛温度升至1000℃,恒温保温至少30分钟,通过上部观察孔5进行观察,当铝锭和电解质完全熔化为液态后,通过计算机重新设定控温参数,使炉膛本文档来自技高网...
【技术保护点】
一种铝电解石墨坩埚实验装置,其特征在于,包括计算机、阳极导电杆(6)、阴极导电杆(7)、石墨阳极(9)、石墨坩埚(10)和壳体(14);壳体(14)内设有加热炉(15),加热炉(15)侧壁上设有炉门,加热炉(15)底板上设有底部炉门(12)的安装口,底部炉门(12)安装于升降机构(13)顶端,升降机构(13)可驱动底部炉门(12)上下往复移动;加热炉(15)顶部设有阳极导电杆安装孔和阴极导电杆安装孔,加热炉(15)顶部并排设有多个U形的第一硅碳棒(3),加热炉(15)顶部并排设有数量与第一硅碳棒(3)数量相同的U形的第二硅碳棒(8),第一硅碳棒(3)下端和第二硅碳棒(8)下端均位于加热炉(15)的炉膛内,第一硅碳棒(3)上端和第二硅碳棒(8)上端均位于加热炉(15)顶部与壳体(14)顶部之间的空隙内;所有第一硅碳棒(3)组成第一硅碳棒组,所有第二硅碳棒(8)组成第二硅碳棒组;加热炉(15)的侧壁上分别设有侧面观察管(1)、加气管(2)和热电偶(11),使用时,使石墨坩埚(10)位于第一硅碳棒组和第二硅碳棒组之间,阴极导电杆(7)穿入阴极导电杆安装孔内,阴极导电杆(7)的下端与石墨坩埚( ...
【技术特征摘要】
1.一种铝电解石墨坩埚实验装置,其特征在于,包括计算机、阳极导电杆(6)、阴极导电杆(7)、石墨阳极(9)、石墨坩埚(10)和壳体(14);壳体(14)内设有加热炉(15),加热炉(15)侧壁上设有炉门,加热炉(15)底板上设有底部炉门(12)的安装口,底部炉门(12)安装于升降机构(13)顶端,升降机构(13)可驱动底部炉门(12)上下往复移动;加热炉(15)顶部设有阳极导电杆安装孔和阴极导电杆安装孔,加热炉(15)顶部并排设有多个U形的第一硅碳棒(3),加热炉(15)顶部并排设有数量与第一硅碳棒(3)数量相同的U形的第二硅碳棒(8),第一硅碳棒(3)下端和第二硅碳棒(8)下端均位于加热炉(15)的炉膛内,第一硅碳棒(3)上端和第二硅碳棒(8)上端均位于加热炉(15)顶部与壳体(14)顶部之间的空隙内;所有第一硅碳棒(3...
【专利技术属性】
技术研发人员:马琼,贾碧,施金良,胡愚,侯伟,杨建壮,魏致慧,毕玉龙,
申请(专利权)人:兰州资源环境职业技术学院,重庆科技学院,
类型:新型
国别省市:甘肃;62
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。