The invention relates to an intelligent optimization method for controlling parameters of medical X optical image processing. First, collect and analyze X light image samples of the invention, including the original images of various examination conditions and the corresponding control parameters; then, a neural network model of multi-layer structure, training and inspection; finally, the neural network model test, combined with CR/DR image processing program, application. The present invention uses neural network model to identify the conditions of image type and image capture, and connects them with appropriate control parameters to provide better quality assurance for CR/DR imaging.
【技术实现步骤摘要】
本专利技术属于图像处理
,具体涉及一种医学X光影像处理控制参量的智能优选方法。
技术介绍
医学X光成像处理时,一般分为影像初级预处理和影像高级处理2个部分。其中,影像初级预处理包括:①产生以整数倍缩小的小影像和超小尺度影像;②产生影像灰阶度直方图;③产生影像梯度矢量场,拉布拉斯标量场;④产生超低通影像和高通影像;⑤产生物体边缘图,背景区域图和直准器遮挡区图等。影像高级处理包括①将影像灰阶度映射到近似于对数的数值,以匹配人眼对x光片的亮度的实际感觉;②做适宜的频率过滤:抑制直流信号,增强高频信号。对滤波后的影像做二级修正;③做降噪处理(适应性降噪技术)等,以获取最终处理后影像。影像高级处理中,需要一组适宜于每个特定影像数据处理的控制参量来控制其对当前影像的数据处理,才能得到高品质的处理后影像。这组控制参量有:低通截止频率,低频抑制强度,高通截止频率,高通增强强度,灰阶度影射曲线参数,等等。一般情况下,由CR/DR设备厂商预先设定若干控制参量组,让检查技师根据检查情况选用。由于患者身躯大小、成人/幼童、检查部位、投影方向、检查侧重点、X光曝光技术参量的不同,X光成像的数据处理所用的控制参量就会不同。技师常常会碰到所选的控制参量不甚适用的情形,控制参量往往需要就个案进行调整。选用不切个案的控制参量处理影像,势必影响最终成像质量。当遇到所选的控制参量严重不适用时,将造成成像质量问题,直接影响后续影像诊断。传统的解决办法是,求助专业技术人员,凭其经验人工调整控制参量,使最终处理后影像满足影像诊断需要,事后再形成控制参量组供技师备选。针对上述实际问题,本专利技 ...
【技术保护点】
一种医学X光影像处理控制参量的智能优选方法,其特征在于该方法具体是:步骤1、收集、整理X光影像样本集,包括各种检查情况下的原始图像及其相应的控制参量,所述的样本集分类为训练样本集和验证样本集;步骤2、建立多层结构的神经网络模型;为实现高度非线性的输入输出映射关系,采用多层多输出节点并行结构的神经网络模型;神经网络的输入向量I由一组从影像提取的特征参量组成;所述特征参量包括归一化的像素值的直方图,像素值重心和分布方差,梯度强度角分量分布,拉普拉斯角分量分布,将它们标为I= (I1, I2, I3, …, Il …, In);神经网络的输出是一组处理当前x光影像所需要的控制参量,包括低频截止频率、低频抑制强度、高通截止频率、高通增强强度和灰阶度影射曲线参数;神经网络的初级输出为识别域中的多节点M,有三个维度,如下:其中,i是输出控制参量指数,j 是输出参数量子化量值数列指数,k 是多节点识别域的节点指数;神经网络的次级输出为控制参量的量子化量值O,该值是从多节点输出值中选出最大值;神经网络的第三层输出为控制参量V,采用类似于模糊逻辑去量子化的计算方式来获得控制参量的模拟数值;步骤3、神经网 ...
【技术特征摘要】
1.一种医学X光影像处理控制参量的智能优选方法,其特征在于该方法具体是:步骤1、收集、整理X光影像样本集,包括各种检查情况下的原始图像及其相应的控制参量,所述的样本集分类为训练样本集和验证样本集;步骤2、建立多层结构的神经网络模型;为实现高度非线性的输入输出映射关系,采用多层多输出节点并行结构的神经网络模型;神经网络的输入向量I由一组从影像提取的特征参量组成;所述特征参量包括归一化的像素值的直方图,像素值重心和分布方差,梯度强度角分量分布,拉普拉斯角分量分布,将它们标为I=(I1,I2,I3,…,Il…,In);神经网络的输出是一组处理当前x光影像所需要的控制参量,包括低频截止频率、低频抑制强度、高通截止频率、高通增强强度和灰阶度影射曲线参数;神经网络的初级输出为识别域中的多节点M,有三个维度,如下:其中,i是输出控制参量指数,j是输出参数量子化量值数列指数,k是多节点识别域的节点指数;神经网络的次级输出为控制参量的量子化量值O,该值是从多节点输出值中选出最大值;神经网络的第三层输出为控制参量V,采用类似于模糊逻辑去量子化的计算方式来获得控制参量的模拟数值;步骤3、神经网络模型的训练;为训练步骤2的神经网络权重矩阵,用训练样本集中大于500例的样本进行神经网络模型训练:X光影像最佳控制参量与当前神经网络输出值做比较,利用其间的误差对神经网络的权重做出调整,反复运行,渐进优化,直至误差小于第一阈值;步骤4、神经网络模型的检验;将步骤3训练好的神经网络模型,用验证样本集中大于100例的样本,逐个比较最佳控制参量与神经网络模型得到的控制参量,若误差小于第二阈值,即完成神经网络模型的验证;否则,返回步骤3,将误差大的样本放入训练样本集中,重新训练神经网络模型;步骤5、神经网络模型的应用;将步骤4训练好并且检验过的神经网络模型应用于CR/DR影像处理主程序中,供技师在遇到不切个案的控制参量情形下,选用神经网络系统智能优选...
【专利技术属性】
技术研发人员:张一荃,
申请(专利权)人:浙江莱达信息技术有限公司,
类型:发明
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。