【技术实现步骤摘要】
本专利技术属于网络信息领域,尤其涉及一种SNA视角下教育技术微博群个案研究模型构建方法。
技术介绍
微博平台中微群的出现,聚合了有相同爱好或者相同标签的用户,实现了用户的分群而居,在经营微博的同时,与志同道合的人共同参与小圈子活动。在国内有影响力的新浪微博平台自推出微群功能后,教育领域内众多班级、团体开通了微群,以期望微群能成为团体经营的有效辅助工具。以新浪微群为例,群名称中含“教育技术”的微群近50个,教育技术相关的微博群更是数不胜数。有关QQ群对促进学习的研究表明,QQ群在构建网络学习共同体、支持开放教育中的小组讨论、提高远程学习者自我效能感和学习成绩有显著作用。同样为利用群组构建学习共同体,促进团体交流,微博群的效用还缺乏实证研究的支撑。专利技术人在2011年6月检索的新浪微群中排名前10位的教育技术类微群中,绝大部分微群人均微博数不足1条,甚至2010年创建的微群微博数仅有10条,多数群中信息久未更新,甚至有结束生命周期的迹象。虽然,教育技术类微群的经营状况在绝大部分并不理想的情况下,但仍然有少数微群有良好的表现。新技术与教育的有效整合是教育技术研究中重点关注的领域,技术与教育的整合效果,其关键不在技术本身,而在于新技术带来的新的解决问题的思路和方法。微博群被教育者赋予了共同体构建和信息的分享传播工具的期望,但如何运作才能取得良好的效果才是关键。本研究以“浙师大edu2.0研究中心”微群为良性运作的教育技术类微博群为个案,从社会网络分析的视角,探索良性运作的教育技术微博群的基本情况、群主的角色和作用、群内话题和热点微博的影响力、微群的社群关系、网 ...
【技术保护点】
一种SNA视角下教育技术微博群个案研究模型构建方法,其特征在于,所述SNA视角下教育技术微博群个案研究模型构建方法包括:步骤一、对微博逐一编码,记录发表时间、发起人、内容属性、话题类属、获评论数量、评论者信息,并记录微博的转发路径;步骤二、对数据采集时间段内的微群话题的名称、发言数、持续时间、发起者、参与成员信息进行统计,微博成员名称均用数字代号来代替;步骤三、通过群中微博的数量分布与时间分布情况两个方面分析各成员在发言上的表现,初步分析活跃成员的情况与不同角色人员的表现;步骤四、分析话题和热点微博的显著热值和时间热值,考察话题和热点微博在微群中的影响力;步骤五、运用社会网络分析方法对微群的网络性质和结构进行分析,考察交往视野中的微群表现状况;步骤六、综合以上分析过程,分析群主、管理员及活跃成员的角色表现。
【技术特征摘要】
1.一种SNA视角下教育技术微博群个案研究模型构建方法,其特征在于,所述SNA视角下教育技术微博群个案研究模型构建方法包括:步骤一、对微博逐一编码,记录发表时间、发起人、内容属性、话题类属、获评论数量、评论者信息,并记录微博的转发路径;步骤二、对数据采集时间段内的微群话题的名称、发言数、持续时间、发起者、参与成员信息进行统计,微博成员名称均用数字代号来代替;步骤三、通过群中微博的数量分布与时间分布情况两个方面分析各成员在发言上的表现,初步分析活跃成员的情况与不同角色人员的表现;步骤四、分析话题和热点微博的显著热值和时间热值,考察话题和热点微博在微群中的影响力;步骤五、运用社会网络分析方法对微群的网络性质和结构进行分析,考察交往视野中的微群表现状况;步骤六、综合以上分析过程,分析群主、管理员及活跃成员的角色表现。2.如权利要求1所述SNA视角下教育技术微博群个案研究模型构建方法,其特征在于,将热点微博分为扩散热点微博和讨论热点微博。3.如权利要求1所述SNA视角下教育技术微博群个案研究模型构建方法,其特征在于,群成员交互的社会网络分析,运用社会网络分析方法通过分析微群网络性质和结构来考察微群在交往视野中的表现,将微博中的回复、评论、@数据视为主动交往数据,录入Ucinet软件得到原始数据矩阵。4.如权利要求1所述SNA视角下教育技术微博群个案研究模型构建方法,其特征在于,运用社会网络分析方法对微群的网络性质和结构进行分析,考察交往视野中的微群表现状况的具体方法为:步骤一、获取若干网站的域名列表中域名的DNS记录,接收用户请求数据,以获取所述DNS记录中使用过CDN网络的域名发布的资源;步骤二、分别采用公共域名解析器和本地域名解析器访问所述使用过CDN网络的域名发布的资源,获取CDN网络的负载均衡信息、内容发布质量信息和跨域通信量信息;步骤三、由处理器将社交网络分成多个用户组,其中,每个用户组在该社交网络中具有唯一标识,由处理器从所述多个用户组中的用户组挖掘数据,从所述数据中识别多个社交变量,其中,所述多个社交变量包括用户数量、用户的联系、用户的交互、用户密切性和用户发表的帖子中的至少一个;步骤四、获取社交网络中的原始数据,并将原始数据进行存储,对所述原始数据进行统一化处理,使得原始数据生成固定格式的数据文件;步骤五、分析公共域名解析器访问获取CDN网络的负载均衡信息、内容发布质量信息和跨域通信量信息与本地域名解析器访问获取CDN网络的负载均衡信息、内容发布质量信息和跨域通信量信息的差异;以及评估公共域名解析器和本地域名解析器的性能,选择适当的域名解析器进行网络访问;步骤六、获取上层应用的信息需求;将上层应用的信息需求用特定的信息转换为网络数据收集的策略,并将所述策略下达给深度包检测单元;步骤七、采用图形化界面帮助用户管理图...
【专利技术属性】
技术研发人员:汪向征,葛彦强,杜丙新,曹军,丁国栋,
申请(专利权)人:安阳师范学院,
类型:发明
国别省市:河南;41
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。