一种基于多目标优化算法的光伏发电最大功率点追踪方法技术

技术编号:14483397 阅读:144 留言:0更新日期:2017-01-26 02:58
本发明专利技术公开了一种基于多目标优化算法的光伏发电最大功率点追踪方法,该方法包括以下步骤:创建光伏发电模型,构造多目标优化问题;对控制电压进行均匀采点,缩小变量的取值范围;求解构造的多目标优化问题,输出获得最大功率点控制电压。本发明专利技术基于多目标优化算法求解光伏阵列最大功率点,能够快速准确的追踪光伏阵列最大功率点,提高光伏发电系统的效率发电。同时,本发明专利技术考虑了光照强度和太阳能电池板表面温度改变的因素所造成的最大功率点迁移,具有极高的自适应性和准确性,能够克服局部遮蔽造成无法找到全局最优点的问题。

【技术实现步骤摘要】

本专利技术涉及太阳能光伏发电
,尤其涉及一种基于多目标优化算法的光伏发电最大功率点追踪方法
技术介绍
目前,光伏发电作为可再生能源领域的重点,提高光伏发电系统的效率是目前研究的热点问题之一。其中一种有效的方法是实时跟踪发电系统的最大功率点。由于光伏电池的输出特性(P-V曲线)具有非线性,且这种非线性受光照强度、电池表面温度、负载等因素影响,因此实时跟踪最大功率点非常困难。尤其是当光伏发电系统处于局部遮蔽的情况下,光伏发电系统的P-V曲线会呈现一种多峰的状况。这些多峰通常会干扰最大功率点追踪,大大降低最大功率追踪算法的效率,使得系统陷入局部最优而不能找到全局最优点。传统的最大功率点追踪方法有扰动观察法(P&O)、查表法、电导增量法(IncCond)等。它们各有优缺点。扰动观察法实现简单,价格便宜,但是无法应对环境快速改变的情况,而且很难确定跟踪步长(步长过长会导致输出功率急剧变化;步长过短则容易陷入局部最优且追踪速度较慢)。查表法容易实现,价格便宜,但是无法应对光伏发电系统部分遮蔽问题。电导增量法可以在环境变化迅速时及时获得有效的解决方案,但是其控制电路复杂且极易陷入局部最优。多目标优化算法是演化计算领域的一个重要分支,旨在同时优化两个及以上相互矛盾的目标,以获得最佳的折中解。其在现实社会中被广泛运用,是一种有效解决工业中具有多个目标的优化问题的方法。
技术实现思路
本专利技术的目的是提供一种基于多目标优化算法的光伏发电最大功率点追踪方法,能够针对太阳能辐射强度改变急剧的情况,能够快速追踪光伏最大功率点。本专利技术采用的技术方案为:一种基于多目标优化算法的光伏发电最大功率点追踪方法,包括以下步骤A和步骤B;A:根据光伏发电模型和最大功率点追踪的目标,构造两个优化函数minF1=|Ix-IPV+Io[exp(Vx+IxRsnsVt)exp-1]+Vx+IxRsRsh|maxF2=Vx·Ix;]]>其中F1是在未知电压与电流下,真实电压电流模型与假设控制电压误差函数,即光伏模型精度函数,F2是当前时刻在未知电压电流下的输出功率,即光伏输出功率函数;Vx和Ix是模型电压和电流,Rs和Rsh分别是串联和并联电阻,ns是串联电阻数量,Vt是节热电压,I0是无光照下电路电流,IPV是光生电流;B:根据步骤A的模型,使多目标优化算法的光伏发电最大功率点追踪方法转变为函数的优化问题,即为寻找一组(Vx,Ix)使得函数F1的数值最小,函数F2的数值最大即可;定义任意一个电流Ix和电压Vx的组合对应后续多目标优化算法中的一个个体。所述的B步骤包括以下步骤:步骤1:通过多次在光伏发电系统采样控制电压、电流和输出功率,确定光伏发电系统最大功率点电压电流的取值范围;步骤2:将步骤1采集到的数据、最大功率点电压电流的取值范围、算法终止条件的参数和N个个体代入多目标优化算法,最终输出N个对应输出功率大且模型误差小的控制电压电流对;步骤3:将从步骤2中获得的N个个体的电压和电流值代入光伏发电模型I=NpIPV-NpIo[exp(NpV+NsIRsNsNpVt)-1]-NpNsV+IRsRsh]]>其中,IPV是光生电流,Io无光照下输出电流,Np是并联电阻Rsh的数量,Ns是串联电阻Rs的数量,Vt是节温电压,计算出该模型左侧假设电路与真实电流的误差。步骤4:选取上述计算误差小于1%对应的个体作为候选解集,步骤5:从候选解集中选择对应输出功率最大的电压值作为当前时刻光伏最大功率点追踪控制电压。权利要求中所构造的多目标优化问题包括以下步骤:A1:根据确定的控制电压Vx、电流Ix的取值范围,随机初始化N个个体,每个个体为一组电压和电流的组合,N个个体组成了初始种群;B1:根据步骤A1中得到初始种群,先采用模拟二进制交叉产生N个新的个体,然后对这N个新的个体进行多项式变异,多项式变异后得到的N个个体构成子代种群;所述的模拟二进制交叉具体如下:从A1中初始化的种群中随机选择两个个体x1和x2,在[0,1]上随机选择一个数k,按照如下形式得到新解x1’和x2’,其中X1’=0.5[(1+k)x1+(1-k)x2];X2’=0.5[(1-k)x1+(1+k)x2];所述的多项式变异具体如下:对随机选择一个个体z,将其突变为新的个体z’,其中z’=z+p(zmax-zmin),其中p=[2u+(1-2u)(1-p1)12]1/12-1,u<=0.51-[2(1-u)+2(u-0.5)(1-p2)12]1/12,u>0.5]]>p1=(z-zmin)/zmax-zmin,p2=(zmax-z)/(zmax-zmin)zmin和zmax分别是z能取的最小和最大值,u为[0,1]内的一个随机数p1和p2均为过渡性参数,C1.合并A1中产生的初始种群和步骤B1中产生的子代种群,得到一个包含2N个个体的新种群,从里面选择N个质量更好的个体:选择的标准是非支配关系和稀疏度关系,优先选择非支配的个体,其次选择分布较为稀疏的个体;D1.对步骤C1中得到的N个非支配的并且较为稀疏的个体,判断算法迭代B1、C1、D1步骤过程的次数是否达到临界值,如果没有达到迭代次数,继续迭代B1、C1、D1这些步骤;否则,步骤C1中选择保留的N个非支配的并且较为稀疏的个体即为权利要求2步骤2中所需要的个体。采用的光伏发电系统输出电压与电流关系模型为I=NpIPV-NpIo[exp(NpVNsNpVt)-1]-NpVRshNs,]]>其中IPV是光生电流,Io无光照下输出电流,Np是并联电阻Rsh的数量,Ns是串联电阻Rs的数量,Vt是节温电压,V是控制电压,F是输出电流;令F=0时根据二分法可以求得开路电压V=Vmax,通过均匀采点输出控制电压得到对应的输出流Ix=[I1I2…Ik],进一步计算输出功率为Px=[P1P2…Pk](Pi=Vi·Ii),根据输出电压P中的最大值Pj=max[P1P2…Pk]得到光伏最大功率点所在范围为Vopt∈[Vj-1Vj+1],该范围为原始搜索范围的2/k。所述多目标优化算法采用了非支配排序和环境选择,本算法采用的种群规模为30,迭代次数为100,采用的新个体产生方式为模拟二进制交叉和多项式变异;同时,为了加快优化效率,设置多目标优化算法的种群规模为30,终止条件为迭代次数小于100次或者最优解改变量小于0.001;步骤5中求解获得的解集中,选取输出功率最大的个体的电压作为光伏阵列控制电压。所述步骤1中确定控制电压、电流的取值范围步骤如下:首先,对控制电压等差距进行均匀采点:根据采点对应得到的输出功率得到最佳控制电压所在区间:根据光伏发电系统数学模型,计算当模型电流为0时的开路电压,在开路电压到0的范围内均匀选取若干模型电压;然后,计算得到与选取的若干模型电压对应的模型电流,并进一步计算得到各个输出功率;最后,根据当前最大输出功率,确定最大输出功率点所对应的电压、电流所在区间,将该区间作为待优化问题的变量的范围即控制电压、电流的取值范围。本专利技术基于多目标优化算法,在计算过程中不需要对光伏发电系统本文档来自技高网...
一种基于多目标优化算法的光伏发电最大功率点追踪方法

【技术保护点】
一种基于多目标优化算法的光伏发电最大功率点追踪方法,其特征在于,包括以下步骤A‑B:A:根据光伏发电模型和最大功率点追踪的目标,构造两个优化函数min F1=|Ix-IPV+Io[exp(Vx+IxRsnsVt)-1]+Vx+IxRsRsh|maxF2=Vx·Ix;]]>其中F1是在未知电压与电流下,真实电压电流模型与假设控制电压误差函数,即光伏模型精度函数,F2是当前时刻在未知电压电流下的输出功率,即光伏输出功率函数;Vx和Ix是模型电压和电流,Rs和Rsh分别是串联和并联电阻,ns是串联电阻数量,Vt是节热电压,I0是无光照下电路电流,IPV是光生电流;B:根据步骤A的模型,使多目标优化算法的光伏发电最大功率点追踪方法转变为函数的优化问题,即为寻找一组(Vx,Ix)使得函数F1的数值最小,函数F2的数值最大即可;定义任意一个电流Ix和电压Vx的组合对应后续多目标优化算法中的一个个体。

【技术特征摘要】
1.一种基于多目标优化算法的光伏发电最大功率点追踪方法,其特征在于,包括以下步骤A-B:A:根据光伏发电模型和最大功率点追踪的目标,构造两个优化函数minF1=|Ix-IPV+Io[exp(Vx+IxRsnsVt)-1]+Vx+IxRsRsh|maxF2=Vx·Ix;]]>其中F1是在未知电压与电流下,真实电压电流模型与假设控制电压误差函数,即光伏模型精度函数,F2是当前时刻在未知电压电流下的输出功率,即光伏输出功率函数;Vx和Ix是模型电压和电流,Rs和Rsh分别是串联和并联电阻,ns是串联电阻数量,Vt是节热电压,I0是无光照下电路电流,IPV是光生电流;B:根据步骤A的模型,使多目标优化算法的光伏发电最大功率点追踪方法转变为函数的优化问题,即为寻找一组(Vx,Ix)使得函数F1的数值最小,函数F2的数值最大即可;定义任意一个电流Ix和电压Vx的组合对应后续多目标优化算法中的一个个体。2.根据权利要求1所述的基于多目标优化算法的光伏发电最大功率点追踪方法,其特征在于:所述的B步骤包括以下步骤1-步骤5:步骤1:通过多次在光伏发电系统采样控制电压、电流和输出功率,确定光伏发电系统最大功率点电压电流的取值范围;步骤2:将步骤1采集到的数据、最大功率点电压电流的取值范围、算法终止条件的参数和N个个体代入多目标优化算法,最终输出N个对应输出功率大且模型误差小的控制电压电流对;步骤3:将从步骤2中获得的N个个体的电压和电流值代入光伏发电模型其中,IPV是光生电流,Io无光照下输出电流,Np是并联电阻Rsh的数量,Ns是串联电阻Rs的数量,Vt是节温电压,计算出该模型左侧假设电路与真实电流的误差;步骤4:选取上述计算误差小于1%对应的个体作为候选解集;步骤5:从候选解集中选择对应输出功率最大的电压值作为当前时刻光伏最大功率点追踪控制电压。3.权利要求2所述的基于多目标优化算法的光伏发电最大功率点追踪方法,其特征在于:所述步骤A中所构造的多目标优化问题包括以下步骤:A1:根据确定的控制电压Vx、电流Ix的取值范围,随机初始化N个个体,每个个体为一组电压和电流的组合,N个个体组成了初始种群;B1:根据步骤A1中得到初始种群,先采用模拟二进制交叉产生N个新的个体,然后对这N个新的个体进行多项式变异,多项式变异后得到的N个个体构成子代种群;所述的模拟二进制交叉具体如下:从A1中初始化的种群中随机选择两个个体x1和x2,在[0,1]上随机选择一个数k,按照如下形式得到新解x1’和x2’,其中X1’=0.5[(1+k)x1+(1-k)x2];X2’=0.5[(1-k)x1+(1+k)x2];所述的多项式变异具体如下:对随机选择一个个体z,将其突变为新的个体z’,其中z’=z+p(zmax-zmin),其中p=[2u+(1-2u)(1-p1)12]1/2...

【专利技术属性】
技术研发人员:潘林强何成姜素霞杨小亮吴庭芳
申请(专利权)人:郑州轻工业学院
类型:发明
国别省市:河南;41

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1