当前位置: 首页 > 专利查询>江苏大学专利>正文

一种人机共驾型电动助力转向系统及模式切换方法技术方案

技术编号:14478196 阅读:196 留言:0更新日期:2017-01-25 10:53
本发明专利技术公开了一种人机共驾型电动助力转向系统及模式切换方法,属于智能汽车无人转向领域,电动助力转向系统包括前置转矩/转角传感器、后置转矩/转角传感器、车速传感器、人机共驾型转向控制器、模式切换控制器、转向电机、转向轴、减速机构、齿轮齿条机构及横摆角速度传感器;通过对现有电动助力转向系统的简单改造,在原有电动助力转向系统上加装后置转矩/转角传感器,实现人驾和机驾两种模式下转矩转角信号的实时获取,为两种模式下的转向电机的工作提供极大便利;同时根据前置转矩/转角传感器和后置转矩/转角传感器的信号,可以简单快速的判断当前车辆的转向模式,并可以实现两种转向模式之间的自动、安全切换。

【技术实现步骤摘要】

本专利技术属于智能汽车无人转向领域,尤其涉及一种人机共驾型电动助力转向系统及模式切换方法
技术介绍
智能汽车是集环境感知、规划决策、多等级辅助驾驶等多领域高新技术于一体的复杂系统,智能汽车技术的发展必将经历从部分驾驶功能自主化到完全自主驾驶,从高速公路等简单环境自动驾驶到各种道路自动驾驶的不断前进的历程。德国大陆集团推出的智能汽车计划分为三步:到2016年实现部分自动驾驶,汽车需要监控系统,驾驶员要随时准备接手驾驶,目标是实现30km/h以内的自动驾驶;到2020年实现高度自动驾驶,不需要监控系统,但驾驶员要在规定时间内接手驾驶;到2025年实现完全自动驾驶,不需要监控系统,驾驶员也无需接手驾驶。2015年底美国加州公布的自动驾驶汽车在城市中行驶管理草案,对智能汽车的转向系统提出了明确的要求:必须兼容自动转向和人工转向双重操控模式。同时,电动助力转向系统(ElectricPowerSteeringsystem,简称EPS)由电机直接提供助力,通过合适的综合控制方法,能十分方便的调节系统助力特性,在汽车中得到了越来越广泛的应用,代表着当今汽车助力转向系统的发展方向。当前欧美日等国家的新车EPS装车率已超过40%,其中日本小车EPS装车率已达到80%。EPS由于在主动安全性、环保节能、电子集成控制、可靠性、结构紧凑性等方面具有显著优势,成为智能汽车转向系统人工转向操控模式必然的选择。中国专利CN103895691A公开了一种商用车智能转向补偿装置,可以根据车辆行驶状态,通过正反向补偿来减少转向不足或缓解转向过度,提高车辆操控灵敏性,但是只是涉及人工转向的情况,并没有考虑自动转向的实现。中国专利CN101875370A公开了一种汽车自适应智能转向系统,可以在自动和手动(舒适/智能/运动)转向模式下切换,但是切换过程需要按下手动/自动转向开关才可以进行切换,尤其是从自动转向切换至手动转向的过程无法自动实现,智能化程度有待进一步提高。
技术实现思路
为解决上述技术问题,本专利技术提供了一种人机共驾型电动助力转向系统及模式切换方法,在充分发挥电动助力转向系统在人工转向优势的基础之上,通过对原有系统进行改进,增加自动转向功能,实现智能汽车的人机共驾功能,并保证两种模式之间的安全智能切换。为了实现上述目的,本专利技术采用以下技术方案:一种人机共驾型电动助力转向系统,其特征在于,包括前置转矩/转角传感器、后置转矩/转角传感器、车速传感器、人机共驾型转向控制器、模式切换控制器、转向电机、转向轴、减速机构、齿轮齿条机构及横摆角速度传感器;所述人机共驾型转向控制器包括信号调理模块、微处理器及驱动模块,所述信号调理模块用于调理前置转矩/转角传感器、后置转矩/转角传感器及车速传感器的信号,去除信号中较大的干扰和杂波;所述微处理器用于产生控制转向电机的控制策略;所述驱动模块是通过微处理器发出的PWM信号调整比例线圈中的电流大小,从而驱动转向电机工作;所述模式切换控制器包括信号调理模块、微处理器及输出模块,所述信号调理模块用于调理前置转矩/转角传感器、后置转矩/转角传感器及车速传感器的信号,去除信号中较大干扰的和杂波;所述微处理器用于产生模式切换控制策略;所述输出模块是根据微处理器发出的高低电平信号,把相应的工作模式传输给人机共驾型转向控制器;所述转向轴与齿轮齿条机构通过齿轮啮合,所述转向轴从上至下依次安装有前置转矩/转角传感器、减速机构及后置转矩/转角传感器,所述减速机构与转向电机通过联轴器连接;所述转向电机与人机共驾型转向控制器通过导线连接,所述人机共驾型转向控制器通过电流控制转向电机;所述人机共驾型转向控制器还通过导线分别与车速传感器、模式切换控制器连接,分别用于产生电动助力转向控制策略、判断人机驾驶模式的切换时间;所述模式切换控制器通过导线分别与前置转矩/转角传感器、后置转矩/转角传感器、车速传感器及横摆角速度传感器相连,采集转矩/转角值、车速以及横摆角速度值,用于判断当前车辆的转向模式,并将当前车辆的转向模式通过高低电平信号传输给人机共驾型转向控制器;所述人机共驾型转向控制器通过导线与前置转矩/转角传感器、后置转矩/转角传感器及车速传感器相连,所述人机共驾型转向控制器通过采集前置转矩/转角传感器的转矩/转角信号与车速传感器的车速信号或后置转矩/转角传感器的转矩/转角信号与车速传感器)的车速信号,分别对转向电机控制,实现人驾模式转向控制或机驾模式转向控制。上述方案中,所述人机共驾型转向控制器包含两种转向模式,即人驾模式和机驾模式。上述方案中,在人驾模式下,转向电机充当助力电机,辅助驾驶员进行人工转向;在机驾模式下,转向电机充当驱动电机,实现无驾驶员参与的自动转向操作。一种人机共驾型电动助力转向系统的模式切换方法,其特征在于,包括以下步骤:步骤1),根据模式切换控制器采集前置转矩/转角传感器、后置转矩/转角传感器的转矩/转角信号以及车速传感器的车速信号,计算当前车速下的理想横摆角速度值步骤2),根据模式切换控制器采集车速传感器的车速信号,计算当前车速下的横摆角速度值的上限值步骤3),由当前车速下的横摆角速度值的上限值得到当前车速下横摆角速度值的安全值,同时得到系统认为可以进行两种转向模式之间进行切换的当前车速下横摆角速度值的安全域;步骤4),从机驾模式切换到人驾模式的过程中,通过检测前置转矩/转角传感器和后置转矩/转角传感器的转矩值,判断是否存在转矩差;同时判断横摆角速度传感器检测到的当前横摆角速度值是否处于横摆角速度安全域中,从而确定是否可以实现机驾模式到人驾模式的切换;步骤5),从人驾模式切换到机驾模式的过程中,通过检测前置转矩/转角传感器的转矩值,判断是否存在转矩值;同时判断前置转矩/转角传感器的转矩值是否维持在3秒以上以及横摆角速度传感器检测到的当前横摆角速度值是否处于横摆角速度安全域中,从而确定是否可以实现人驾模式到机驾模式的切换。进一步,所述步骤3)中当前车速下横摆角速度值的安全值为其中k为当前车速下横摆角速度值的安全系数,安全系数k是经过大量仿真和试验获取的。进一步,所述步骤3)中当前车速下横摆角速度值的安全域为本专利技术的有益效果为:本专利技术通过对现有电动助力转向系统的简单改造,在原有电动助力转向系统上加装后置转矩/转角传感器,实现人驾和机驾两种模式下转矩转角信号的实时获取,为两种模式下的转向电机的工作提供极大便利;同时根据前置转矩/转角传感器和后置转矩/转角传感器的信号,可以简单快速的判断当前车辆的转向模式,并可以实现两种转向模式之间的自动、安全切换。附图说明图1为人机共驾型电动助力转向系统的结构示意图;图2为人机共驾型电动助力转向系统模式切换方法的流程图;图3为机驾模式向人驾模式切换时,人机共驾型电动助力转向系统的模式切换原理框图;图4为人驾模式向机驾模式切换时,人机共驾型电动助力转向系统的模式切换原理框图。图中:1-前置转矩/转角传感器;2-后置转矩/转角传感器;3-车速传感器;4-人机共驾型转向控制器;5-模式切换控制器;6-转向电机;7-转向轴;8-减速机构;9-齿轮齿条机构;10-横摆角速度传感器。具体实施方式下面结合附图及具体实施例对本本文档来自技高网
...
一种人机共驾型电动助力转向系统及模式切换方法

【技术保护点】
一种人机共驾型电动助力转向系统,其特征在于,包括前置转矩/转角传感器(1)、后置转矩/转角传感器(2)、车速传感器(3)、人机共驾型转向控制器(4)、模式切换控制器(5)、转向电机(6)、转向轴(7)、减速机构(8)、齿轮齿条机构(9)及横摆角速度传感器(10);所述人机共驾型转向控制器(4)包括信号调理模块、微处理器及驱动模块,所述信号调理模块用于调理前置转矩/转角传感器(1)、后置转矩/转角传感器(2)及车速传感器(3)的信号,去除信号中较大的干扰和杂波;所述微处理器用于产生控制转向电机(6)的控制策略;所述驱动模块是通过微处理器发出的PWM信号调整比例线圈中的电流大小,从而驱动转向电机(6)工作;所述模式切换控制器(5)包括信号调理模块、微处理器及输出模块,所述信号调理模块用于调理前置转矩/转角传感器(1)、后置转矩/转角传感器(2)及车速传感器(3)的信号,去除信号中较大的干扰和杂波;所述微处理器用于产生模式切换控制策略;所述输出模块是根据微处理器发出的高低电平信号,把相应的工作模式传输给人机共驾型转向控制器(4);所述转向轴(7)与齿轮齿条机构(9)通过齿轮啮合,所述转向轴(7)从上至下依次安装有前置转矩/转角传感器(1)、减速机构(8)及后置转矩/转角传感器(2),所述减速机构(8)与转向电机(6)通过联轴器连接;所述转向电机(6)与人机共驾型转向控制器(4)通过导线连接,所述人机共驾型转向控制器(4)通过电流控制转向电机(6);所述人机共驾型转向控制器(4)还通过导线分别与车速传感器(3)、模式切换控制器(5)连接,分别用于产生电动助力转向控制策略、判断人机驾驶模式的切换时间;所述模式切换控制器(5)通过导线分别与前置转矩/转角传感器(1)、后置转矩/转角传感器(2)、车速传感器(3)及横摆角速度传感器(10)相连,采集转矩/转角值、车速以及横摆角速度值,用于判断当前车辆的转向模式,并将当前车辆的转向模式通过高低电平信号传输给人机共驾型转向控制器(4);所述人机共驾型转向控制器(4)通过导线与前置转矩/转角传感器(1)、后置转矩/转角传感器(2)及车速传感器(3)相连,所述人机共驾型转向控制器(4)通过采集前置转矩/转角传感器(1)的转矩/转角信号与车速传感器(3)的车速信号或后置转矩/转角传感器(2)的转矩/转角信号与车速传感器(3)的车速信号,分别对转向电机(6)控制,实现人驾模式转向控制或机驾模式转向控制。...

【技术特征摘要】
1.一种人机共驾型电动助力转向系统,其特征在于,包括前置转矩/转角传感器(1)、后置转矩/转角传感器(2)、车速传感器(3)、人机共驾型转向控制器(4)、模式切换控制器(5)、转向电机(6)、转向轴(7)、减速机构(8)、齿轮齿条机构(9)及横摆角速度传感器(10);所述人机共驾型转向控制器(4)包括信号调理模块、微处理器及驱动模块,所述信号调理模块用于调理前置转矩/转角传感器(1)、后置转矩/转角传感器(2)及车速传感器(3)的信号,去除信号中较大的干扰和杂波;所述微处理器用于产生控制转向电机(6)的控制策略;所述驱动模块是通过微处理器发出的PWM信号调整比例线圈中的电流大小,从而驱动转向电机(6)工作;所述模式切换控制器(5)包括信号调理模块、微处理器及输出模块,所述信号调理模块用于调理前置转矩/转角传感器(1)、后置转矩/转角传感器(2)及车速传感器(3)的信号,去除信号中较大的干扰和杂波;所述微处理器用于产生模式切换控制策略;所述输出模块是根据微处理器发出的高低电平信号,把相应的工作模式传输给人机共驾型转向控制器(4);所述转向轴(7)与齿轮齿条机构(9)通过齿轮啮合,所述转向轴(7)从上至下依次安装有前置转矩/转角传感器(1)、减速机构(8)及后置转矩/转角传感器(2),所述减速机构(8)与转向电机(6)通过联轴器连接;所述转向电机(6)与人机共驾型转向控制器(4)通过导线连接,所述人机共驾型转向控制器(4)通过电流控制转向电机(6);所述人机共驾型转向控制器(4)还通过导线分别与车速传感器(3)、模式切换控制器(5)连接,分别用于产生电动助力转向控制策略、判断人机驾驶模式的切换时间;所述模式切换控制器(5)通过导线分别与前置转矩/转角传感器(1)、后置转矩/转角传感器(2)、车速传感器(3)及横摆角速度传感器(10)相连,采集转矩/转角值、车速以及横摆角速度值,用于判断当前车辆的转向模式,并将当前车辆的转向模式通过高低电平信号传输给人机共驾型转向控制器(4);所述人机共驾型转向控制器(4)通过导线与前置转矩/转角传感器(1)、后置转矩/转角传感器(2)及车速传感器(3)相连,所述人机共驾型转向控制器(4)通过采集前置转矩/转角传感器(1)的转矩/转角信号与车速...

【专利技术属性】
技术研发人员:华一丁江浩斌陈龙徐兴蔡骏宇李傲雪马世典耿国庆
申请(专利权)人:江苏大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1