BN/Ag二维层状复合材料的导热胶的制备方法技术

技术编号:14419486 阅读:109 留言:0更新日期:2017-01-12 19:54
本发明专利技术提供一种BN/Ag二维层状复合材料的导热胶的制备方法,采用溶剂剥离方法制备二维层状氮化硼薄膜,通过合理的工艺将制备的纳米银离子负载到氮化硼薄膜上,最后将这种复合物填充到导热胶中。负载了银离子的氮化硼薄膜增强了导热胶的导热效率,所以可以把这种特制的导热胶应用于高热流密度的大功率电子器件中。

【技术实现步骤摘要】

本专利技术涉及微电子器件封装中导热胶的制备方法,应用于在高热流密度的大功率电子器件中满足散热

技术介绍
Morre定律指出,芯片集成电路的集成规模每18个月将翻一番,按照这个速度发展,IC的集成度将迅猛增加,此时有效的器件散热变得尤为的重要,因此广泛应用于芯片散热的导热胶导热性能的研发变得流行起来。而填料的特性又变得相当的关键,差的导热性能,大的密度和局限的可靠性都使导热胶填料的运用受到限制。一般而言,传统的导热胶都是使用高分子聚合物作为基体材料,并且往导热胶中填充大量的具有高导热系数的金属粉末(通常都是银颗粒),为的是能够在室温下获得较高的导热率。近几年,人们发现石墨烯具有很高的导热性,甚至当它与高分子材料混合时依然可以保持这个特性。这是因为石墨烯是一种二维层状材料,它具有很高的表面热扩散能力,当有热量作用于表面时,依靠其自身的热扩散能力,可以将热量很快的扩散出去。作为与石墨烯类似的二维层状材料,二维层状氮化硼的导热系数为石英的十倍,也具有较高的导热性能。
技术实现思路
本专利技术的目的在于克服现有技术中存在的不足,提供一种BN/Ag二维层状复合材料的导热胶的制备方法,制备出一种新型的导热胶,通过添加自主研发的负载了纳米银颗粒的二维层状氮化硼混合物提高导热胶的导热性能,可以应用于热流密度较高的集成电路芯片表面,解决大功率器件局部高热流热点的散热问题。本专利技术采用的技术方案是:BN/Ag二维层状复合材料的导热胶的制备方法,包括下述步骤:步骤S1,采用液相剥离法制备二维层状氮化硼薄膜;称取一定质量的氮化硼粉末倒入烧杯中,加入有机溶剂异丙醇配成质量体积比为1mg/ml~4mg/ml的溶液,氮化硼粉末与异丙醇的质量体积比为2mg/ml是最优的;超声9~11个小时,取出烧杯静置一到两天,取上清液得到的即为二维层状氮化硼薄膜分散液;在此步骤的工艺过程中,超声的时间一定要控制好,在保证温度15℃~40℃的条件下,10个小时的超声时间是最优的,能获得薄膜直径在300nm左右,厚度在0.6nm左右的二维层状氮化硼薄膜;步骤S2,通过以硝酸银为基本的反应物得出纳米银颗粒的溶液;此步骤中,将硝酸银乙醇溶液与PVP乙醇溶液相混合得到纳米银颗粒的溶液,硝酸银/PVP摩尔比为0.5~2;其中,硝酸银乙醇溶液的摩尔浓度为0.1mol/L~0.2mol/L;PVP乙醇溶液的摩尔浓度为0.3mol/L。步骤S3,将纳米银颗粒的溶液加入到二维层状氮化硼薄膜的分散液中,超声加热1.5~3小时得到均匀负载纳米银颗粒的二维层状氮化硼薄膜溶液;在反应后,通过离心、清洗、干燥得到负载纳米银颗粒二维层状氮化硼薄膜。步骤S4,最后将负载纳米银颗粒二维层状氮化硼薄膜与标准导热胶离心混合得到胶体。本专利技术的优点在于:1)本专利技术以负载了纳米银颗粒的氮化硼薄膜作为导热胶的填充物,当填充物在导热胶中的百分比达到2.7%时,导热胶的导热效率提高了20%;当百分比例达到7.7%时,导热效率提高了52%;从传热学方面考虑,当填充物的导热率比基底物质大时,其整个混合物的导热率都会增加,氮化硼薄膜的导热率是石英的十倍,当负载了纳米银颗粒后,其导热率还会增加,而且由于纳米银颗粒在薄膜上分布均匀,所以当热量通过一个纳米银颗粒传给氮化硼薄膜时,薄膜会将热量迅速传送到其它的纳米银颗粒,从而使整个二维材料传热效率更高、更快;2)随着填充物量不断的增大,导热胶会受到粘度方面的影响,由于本专利技术中以氮化硼为基本物质,氮化硼自身优越的润滑性能大大的降低了导热胶的粘度,从而使相同量的导热胶中可以填充更大量的负银氮化硼薄膜。附图说明图1为本专利技术的导热胶的导热率与BN/Ag填充量关系图。具体实施方式下面结合具体附图和实施例对本专利技术作进一步说明。BN/Ag二维层状复合材料的导热胶,其中的填充物通过液相剥离的方法从氮化硼粉末中剥离出二维层状的氮化硼薄膜,然后通过以硝酸银为基本的反应物得出纳米银颗粒的溶液,最后通过超声手段将其纳米银颗粒负载到二维层状氮化硼薄膜上形成特殊的金属氮化硼薄膜混合物;将负载纳米银颗粒二维层状氮化硼薄膜与标准导热胶离心混合得到胶体。该导热胶详细的制备方法包括如下步骤:实施例一,步骤S1,采用液相剥离法制备二维层状氮化硼薄膜;称取400mg氮化硼粉末倒入烧杯中,加入200ml有机溶剂异丙醇配成溶液;在温度20℃的条件下,超声10个小时,取出烧杯静置一到两天,取上清液得到的即为二维层状氮化硼薄膜分散液;步骤S2,将0.15mol/L的硝酸银乙醇溶液100ml与0.3mol/L的PVP乙醇溶液100ml相混合得到深红色稳定液体,即纳米银颗粒的溶液;在制备银纳米颗粒时,保护剂和硝酸银的浓度、反应时间对银颗粒的尺寸与形态都有显著的影响。经过多次试验,优化参数,成功制备出颗粒均匀的纳米银颗粒,粒径在10nm左右。根据实验结果和表征手段判断出纳米银颗粒能够负载于氮化硼薄膜上是由于纳米银与B(硼)及N(氮)的键合作用。步骤S3:将纳米银颗粒的溶液加入到二维层状氮化硼薄膜的分散液中,超声加热2小时得到均匀负载纳米银颗粒的二维层状氮化硼薄膜溶液;在反应后,通过离心、清洗、干燥得到负载纳米银颗粒二维层状氮化硼薄膜。负载纳米银颗粒二维层状氮化硼薄膜直径在300nm左右,厚度在0.6nm左右,肉眼看是一种稳定的固体粉末;步骤S4,将负载纳米银颗粒二维层状氮化硼薄膜与其它环氧聚合物一起离心混合得导热胶,低温冷藏。测试时100℃固化并切割成标准固体。实施例二,步骤S1,采用液相剥离法制备二维层状氮化硼薄膜;称取200mg氮化硼粉末倒入烧杯中,加入200ml有机溶剂异丙醇配成溶液;在温度15℃的条件下,超声11个小时,取出烧杯静置一到两天,取上清液得到的即为二维层状氮化硼薄膜分散液;步骤S2,将0.1mol/L的硝酸银乙醇溶液150ml与0.3mol/L的PVP乙醇溶液100ml相混合得到深红色稳定液体,即纳米银颗粒的溶液;步骤S3:将纳米银颗粒的溶液加入到二维层状氮化硼薄膜的分散液中,超声加热3小时得到均匀负载纳米银颗粒的二维层状氮化硼薄膜溶液;在反应后,通过离心、清洗、干燥得到负载纳米银颗粒二维层状氮化硼薄膜。步骤S4,将负载纳米银颗粒二维层状氮化硼薄膜与其它环氧聚合物一起离心混合得导热胶,低温冷藏。测试时100℃固化并切割成标准固体。实施例三,步骤S1,采用液相剥离法制备二维层状氮化硼薄膜;称取800mg氮化硼粉末倒入烧杯中,加入200ml有机溶剂异丙醇配成溶液;在温度40℃的条件下,超声9个小时,取出烧杯静置一到两天,取上清液得到的即为二维层状氮化硼薄膜分散液;步骤S2,将0.2mol/L的硝酸银乙醇溶液300ml与0.3mol/L的PVP乙醇溶液100ml相混合得到深红色稳定液体,即纳米银颗粒的溶液;步骤S3:将纳米银颗粒的溶液加入到二维层状氮化硼薄膜的分散液中,超声加热1.5小时得到均匀负载纳米银颗粒的二维层状氮化硼薄膜溶液;在反应后,通过离心、清洗、干燥得到负载纳米银颗粒二维层状氮化硼薄膜。步骤S4,将负载纳米银颗粒二维层状氮化硼薄膜与其它环氧聚合物一起离心混合得导热胶,低温冷藏。测试时100℃固化并切割成标准固体。本文档来自技高网...
BN/Ag二维层状复合材料的导热胶的制备方法

【技术保护点】
一种BN/Ag二维层状复合材料的导热胶的制备方法,其特征在于,包括下述步骤:步骤S1,采用液相剥离法制备二维层状氮化硼薄膜;步骤S2,通过以硝酸银为基本的反应物得出纳米银颗粒的溶液;步骤S3,将纳米银颗粒的溶液加入到二维层状氮化硼薄膜的分散液中,通过超声手段将纳米银颗粒负载到二维层状氮化硼薄膜上形成特殊的金属氮化硼薄膜混合物;步骤S4,最后将负载纳米银颗粒二维层状氮化硼薄膜与标准导热胶离心混合得到胶体。

【技术特征摘要】
1.一种BN/Ag二维层状复合材料的导热胶的制备方法,其特征在于,包括下述步骤:步骤S1,采用液相剥离法制备二维层状氮化硼薄膜;步骤S2,通过以硝酸银为基本的反应物得出纳米银颗粒的溶液;步骤S3,将纳米银颗粒的溶液加入到二维层状氮化硼薄膜的分散液中,通过超声手段将纳米银颗粒负载到二维层状氮化硼薄膜上形成特殊的金属氮化硼薄膜混合物;步骤S4,最后将负载纳米银颗粒二维层状氮化硼薄膜与标准导热胶离心混合得到胶体。2.如权利要求1所述的BN/Ag二维层状复合材料的导热胶的制备方法,其特征在于,步骤S1具体包括:称取一定质量的氮化硼粉末倒入烧杯中,加入有机溶剂异丙醇配成质量体积比为1mg/ml~4mg/ml的溶液;在保证温度15℃~40℃的条件下,超声9~11个小时,取出烧杯静置一到两天,取上清液得到的即为二维层状氮化硼薄膜分散液。3.如权利要求2所述的BN/Ag二维层状复合材料的导热胶的...

【专利技术属性】
技术研发人员:刘建影付璇鲍婕孙双希黄时荣袁志超路秀真曹立强孙鹏
申请(专利权)人:华进半导体封装先导技术研发中心有限公司上海大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1