基于小波特征值容差阈值随机统计模拟的故障判别方法技术

技术编号:14372219 阅读:103 留言:0更新日期:2017-01-09 17:59
本发明专利技术公开了一种基于小波特征值容差阈值随机统计模拟的故障判别方法,它包括利用信号的小波分析判别故障、利用信号容差阈值判别故障、利用小波分析特征值容差阈值判别故障、利用小波分析敏感特征值阈值判别故障等步骤。本发明专利技术采用随机统计模拟的方法得到信号小波分析特征值阈值和敏感特征值阈值,并应用特征值阈值和敏感特征值阈值判断信号是否为故障信号,该方法不需要大量故障信号和正常信号样本即可判断,解决了采用神经网络和支持向量机等众多方法因无法获得训练样本而导致的无法进行故障判别的难题,同时该方法节省了大量的时间,方法简单、准确性高。

【技术实现步骤摘要】

本专利技术属于信号分析和故障诊断领域,涉及一种基于小波特征值容差阈值随机统计模拟的故障判别方法
技术介绍
现代测试设备或者故障诊断设备,在对被测装备进行故障诊断时,大多要将测试探头(传感器)获得的能反映被测装备是否故障的各种物理(光、声、电、振动等)特征信号转换为电信号,然后分析此特征电信号是否正常,以判断被测装备是否故障。在这一过程中,如何识别、判断被测特征信号是否为故障信号是一难点。目前,将获得的被测装备的被测特征信号与正常工作时采集的正常特征信号(即样本信号)相比较的波形匹配技术,是自动判别特征信号是否为故障信号的有效方法。郝敬松等在2015年发表的《基于波形匹配的星载AIS信号检测》一文中,采用波形匹配技术,通过计算接收信号(被测信号)和样本信号(正常信号)的相关系数来确定两者是否匹配,检测接收信号是否存在时延和频偏故障。但是,采用这样的方法需要一个前提条件,即被测信号和样本信号具有相同的特定数学模型。然而,在大多数情况下,如果被测装备发生故障,被测信号的波形是千变万化,无法确定其数学模型的,甚至样本信号也是无法用数学模型描述。在这种情况下的波形匹配,可以人工观察被测信号和样本信号的波形,如果有明显的区别,则可以判断被测装备发生了故障。但是,如果两者波形区别不大,或者波形比较复杂,就需要比较两个波形的特征参数值(特征值),如果两者特征值的差值超过了容差范围(即容差阈值),则可以判断被测装备发生了故障。宋丽蔚等在2013年发表的《波形匹配技术在测试性仿真验证中的应用》一文中,采用小波分析技术,分解出信号波形的特征值,并采用基于支持向量机的分类方法,通过大量故障信号和正常信号的样本训练,将分类正常信号和故障信号的容差阈值固化在支持向量机相应的拟合函数中,用来识别分类被测信号。该文采用小波分析技术较好的分解出了信号波形的特征值,但是采用基于支持向量机的分类方法,需要事先提供大量正常信号和故障信号样本进行训练,这在一般情况下是不可能做到的。采用这类方法时,特征值容差阈值的获取,不论是采用支持向量机、神经网络还是其它方法,基本上都需要大量故障信号和正常信号样本,这在现实中难以达到,因此需要研究采用新的方法来获得信号特征值容差阈值,以判别被测信号是故障信号还是正常信号。
技术实现思路
本专利技术要解决的技术问题,是提供一种基于小波特征值容差阈值随机统计模拟的故障判别方法,本专利技术采用随机统计模拟的方法得到信号小波分析特征值阈值和敏感特征值阈值,并应用特征值阈值和敏感特征值阈值判断信号是否为故障信号,该方法不需要大量故障信号和正常信号样本即可判断,节省了大量的时间,方法简单、准确性高。为解决上述技术问题,本专利技术所采取的技术方案是:一种基于小波特征值容差阈值随机统计模拟的故障判别方法,它按照如下的步骤顺序进行:一、利用信号的小波分析判别故障采用小波分析方法,将被测信号和样本信号(未发生故障时的正常信号)进行时间或空间频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,提取样本信号和被测信号的多种频率,进行显示比对,并计算各层小波分析的弧距,计算高频分量特征值并将被测信号和样本信号进行比对;如果样本信号和被测信号小波分析出的特征值差异较大,则可判断被测装备发生了故障;如果特征值差异较小,则需要依次利用下述步骤的信号容差阈值、特征值阈值和敏感特征值阈值来进行综合判别;二、利用信号容差阈值判别故障信号容差均值的算法如公式(1),Δ‾xy=(Σi=1n|xi-yi|)/n,i=1,2,3,...,n---(1)]]>公式(1)中,为信号的容差均值,xi为样本信号x的第i个数据,yi为被测信号y的第i个数据,n为数据采样点数;给定一个限定值为信号的容差阈值,当时,则判定被测信号y为故障信号,否则为正常信号,称为信号的容差阈值;三、利用小波分析特征值容差阈值判别故障为了避免步骤二中采用信号的容差阈值判别导致的误判,保证准确、可靠地判别故障,利用小波分析特征值容差阈值按照如下步骤判别故障:步骤①:根据步骤二中输入的信号容差阈值,以样本信号数据作为基准,将步骤二中输入的信号容差阈值作为信号容差均值期望,仿真模拟出若干组被测信号数据;步骤②:对步骤①获得的仿真模拟信号数据每组分别进行小波分析,求出每组仿真模拟信号数据各自的特征参数的值;步骤③:将所有组仿真模拟信号小波分析同一个特征参数的值相加,除以仿真模拟信号组数,求得此特征参数的均值,用此方法求出所有特征参数的均值,特征参数均值的算法如公式(2),公式(2)中,为所有组仿真模拟信号小波分析第j个特征参数的均值,r为小波分析特征参数的个数,m为仿真模拟信号数据的组数,为第i组仿真模拟信号数据小波分析的第j个特征参数值;步骤④:将步骤③获得的全部特征参数的均值与样本信号小波分析的同一个特征参数的值相减取绝对值并求和,获得特征值容差阈值特征值容差阈值的算法如公式(3),公式(3)中,为小波分析特征值容差阈值,为样本信号第j个特征参数的值;步骤⑤:对实测的被测信号进行小波分析,将其小波分析各特征值分别与样本信号小波分析对应的特征值相减取绝对值并求和,得到实际特征值容差如果则判断被测信号为故障信号,否则为正常信号,实际特征值容差的算法如公式(4),公式(4)中,为实际特征值容差,为实测的被测信号小波分析第j个特征参数的值;四、利用小波分析敏感特征值阈值判别故障为了避免步骤三中小波分析特征值容差阈值对故障信号的误判和无法判别故障情况的出现,需要利用小波分析敏感特征值阈值对故障进行判别,具体步骤如下:步骤(a):将步骤②中获得的每组仿真模拟信号数据的小波分析特征值按照小波分析的层进行分组,每一层小波分析对应一组特征值;步骤(b):以样本信号数据小波分析每一层对应的特征值为基准,计算所有仿真模拟信号数据小波分析同一层对应的特征值与这些基准特征值的容差均值,算法如公式(5),公式(5)中,为所有仿真模拟信号数据与样本信号数据第h层小波分析特征值容差均值,h为小波分析的层号,rh为第h层小波分析的特征值个数,为第i组仿真模拟信号数据第h层小波分析的第j个特征值,为样本信号数据第h层小波分析第j个特征值,k为总共进行的小波分析的层数;步骤(c):从第1层到第k层,对计算出的值进行大小排列,选取值最大的前p个对应的小波分析层的特征值组作为敏感特征值组;步骤(d):将所有组仿真模拟信号小波分析中,步骤(c)所选出的p个敏感特征值组里的同一个特征参数的值相加,除以仿真模拟信号的组数,求得此敏感特征值的均值,用此方法求出这p个特征值组里所有特征值的均值,敏感特征值均值的算法如公式(6),公式(6)中,为所有组仿真模拟信号p个敏感特征值组中第j个敏感特征值的均值,rp为p个敏感特征值组中所有敏感特征参数的个数,为第i组仿真模拟信号数据小波分析的p个敏感特征值组中第j个特征值;步骤(e):将步骤(d)获得的全部敏感特征值的均值与样本信号对应小波分析敏感特征值相减取绝对值并求和,获得敏感特征值容差阈值敏感特征值容差阈值的算法如公式(7),公式(7)中,为小波分析敏感特征值容差阈值;步骤(f):对实测的被测信号进行小波分析,将其p个敏感特征值组中的所本文档来自技高网
...

【技术保护点】
一种基于小波特征值容差阈值随机统计模拟的故障判别方法,其特征在于它按照如下的步骤顺序进行:一、利用信号的小波分析判别故障采用小波分析方法,将被测信号和样本信号(未发生故障时的正常信号)进行时间或空间频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,提取样本信号和被测信号的多种频率,进行显示比对,并计算各层小波分析的弧距,计算高频分量特征值并进行比对;如果样本信号和被测信号小波分析出的特征值差异较大,则可判断被测装备发生了故障;如果特征值差异较小,则需要依次利用下述步骤的信号容差阈值、特征值阈值和敏感特征值阈值来进行综合判别;二、利用信号容差阈值判别故障信号容差均值的算法如公式(1),Δ‾xy=(Σi=1n|xi-yi|)/n,i=1,2,3,...,n---(1)]]>公式(1)中,为信号的容差均值,xi为样本信号x的第i个数据,yi为被测信号y的第i个数据,n为数据采样点数;给定一个限定值为信号的容差阈值,当时,则判定被测信号y为故障信号,否则为正常信号,称为信号的容差阈值;三、利用小波分析特征值容差阈值判别故障利用小波分析特征值容差阈值按照如下步骤判别故障:步骤①:根据步骤二中输入的信号容差阈值,以样本信号数据作为基准,将步骤二中输入的信号容差阈值作为信号容差均值期望,仿真模拟出若干组被测信号数据;步骤②:对步骤①获得的仿真模拟信号数据每组分别进行小波分析,求出每组仿真模拟信号数据各自的特征参数的值;步骤③:将所有组仿真模拟信号小波分析同一个特征参数的值相加,除以仿真模拟信号组数,求得此特征参数的均值,用此方法求出所有特征参数的均值,特征参数均值的算法如公式(2),公式(2)中,为所有组仿真模拟信号小波分析第j个特征参数的均值,r为小波分析特征参数的个数,m为仿真模拟信号数据的组数,为第i组仿真模拟信号数据小波分析的第j个特征参数值;步骤④:将步骤③获得的全部特征参数的均值与样本信号小波分析的同一个特征参数的值相减取绝对值并求和,获得特征值容差阈值特征值容差阈值的算法如公式(3),公式(3)中,为小波分析特征值容差阈值,为样本信号第j个特征参数的值;步骤⑤:对实测的被测信号进行小波分析,将其小波分析各特征值分别与样本信号小波分析对应的特征值相减取绝对值并求和,得到实际特征值容差如果则判断被测信号为故障信号,否则为正常信号,实际特征值容差的算法如公式(4),公式(4)中,为实际特征值容差,为实测的被测信号小波分析第j个特征参数的值;四、利用小波分析敏感特征值阈值判别故障利用小波分析敏感特征值阈值对故障进行判别,具体步骤如下:步骤(a):将步骤②中获得的每组仿真模拟信号数据的小波分析特征值按照小波分析的层进行分组,每一层小波分析对应一组特征值;步骤(b):以样本信号数据小波分析每一层对应的特征值为基准,计算所有仿真模拟信号数据小波分析同一层对应的特征值与这些基准特征值的容差均值,算法如公式(5),公式(5)中,为所有仿真模拟信号数据与样本信号数据第h层小波分析特征值容差均值,h为小波分析的层号,rh为第h层小波分析的特征值个数,为第i组仿真模拟信号数据第h层小波分析的第j个特征值,为样本信号数据第h层小波分析第j个特征值,k为总共进行的小波分析的层数;步骤(c):从第1层到第k层,对计算出的值进行大小排列,选取值最大的前p个对应的小波分析层的特征值组作为敏感特征值组;步骤(d):将所有组仿真模拟信号小波分析中,步骤(c)所选出的p个敏感特征值组里的同一个特征参数的值相加,除以仿真模拟信号的组数,求得此敏感特征值的均值,用此方法求出这p个特征值组里所有特征值的均值,敏感特征值均值的算法如公式(6),公式(6)中,为所有组仿真模拟信号p个敏感特征值组中第j个敏感特征值的均值,rp为p个敏感特征值组中所有敏感特征参数的个数,为第i组仿真模拟信号数据小波分析的p个敏感特征值组中第j个特征值;步骤(e):将步骤(d)获得的全部敏感特征值的均值与样本信号对应小波分析敏感特征值相减取绝对值并求和,获得敏感特征值容差阈值敏感特征值容差阈值的算法如公式(7),公式(7)中,为小波分析敏感特征值容差阈值;步骤(f):对实测的被测信号进行小波分析,将其p个敏感特征值组中的所有敏感特征值分别与样本信号小波分析的同一个敏感特征参数的值相减取绝对值并求和,得到实际敏感特征值容差如果则判断被测信号为故障信号,否则为正常信号,实际敏感特征值容差的算法如公式(8),公式(8)中,为实际敏感特征值容差,为实测的被测信号小波分析p个敏感特征值组中第j个敏感特征参数的值。...

【技术特征摘要】
1.一种基于小波特征值容差阈值随机统计模拟的故障判别方法,其特征在于它按照如下的步骤顺序进行:一、利用信号的小波分析判别故障采用小波分析方法,将被测信号和样本信号(未发生故障时的正常信号)进行时间或空间频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,提取样本信号和被测信号的多种频率,进行显示比对,并计算各层小波分析的弧距,计算高频分量特征值并进行比对;如果样本信号和被测信号小波分析出的特征值差异较大,则可判断被测装备发生了故障;如果特征值差异较小,则需要依次利用下述步骤的信号容差阈值、特征值阈值和敏感特征值阈值来进行综合判别;二、利用信号容差阈值判别故障信号容差均值的算法如公式(1),Δ‾xy=(Σi=1n|xi-yi|)/n,i=1,2,3,...,n---(1)]]>公式(1)中,为信号的容差均值,xi为样本信号x的第i个数据,yi为被测信号y的第i个数据,n为数据采样点数;给定一个限定值为信号的容差阈值,当时,则判定被测信号y为故障信号,否则为正常信号,称为信号的容差阈值;三、利用小波分析特征值容差阈值判别故障利用小波分析特征值容差阈值按照如下步骤判别故障:步骤①:根据步骤二中输入的信号容差阈值,以样本信号数据作为基准,将步骤二中输入的信号容差阈值作为信号容差均值期望,仿真模拟出若干组被测信号数据;步骤②:对步骤①获得的仿真模拟信号数据每组分别进行小波分析,求出每组仿真模拟信号数据各自的特征参数的值;步骤③:将所有组仿真模拟信号小波分析同一个特征参数的值相加,除以仿真模拟信号组数,求得此特征参数的均值,用此方法求出所有特征参数的均值,特征参数均值的算法如公式(2),公式(2)中,为所有组仿真模拟信号小波分析第j个特征参数的均值,r为小波分析特征参数的个数,m为仿真模拟信号数据的组数,为第i组仿真模拟信号数据小波分析的第j个特征参数值;步骤④:将步骤③获得的全部特征参数的均值与样本信号小波分析的同一个特征参数的值相减取绝对值并求和,获得特征值容差阈值特征值容差阈值的算法如公式(3),公式(3)中,为小波分析特征值容差阈值,为样本信号第j个特征参数的值;步骤⑤:对实测的被测信号进行小波分析,将其小波分析各特征值分别与样本信号小波分析对应...

【专利技术属性】
技术研发人员:马彦恒李刚尹园威刘新海
申请(专利权)人:中国人民解放军军械工程学院
类型:发明
国别省市:河北;13

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1