树木胸径预测方法技术

技术编号:14350194 阅读:133 留言:0更新日期:2017-01-04 20:57
本发明专利技术提供了一种树木胸径预测方法。该树木胸径预测方法包括:步骤A:构建树木胸径变化的数学模型;步骤B:获得树木生长过程中至少四组树龄‑胸径数据;步骤C:运用至少四组树龄‑胸径数据对数学模型进行拟合,求取模型参数的值,得到完整的数学模型;以及步骤F:将未来感兴趣时间点的树龄带入数学模型中,得到该树龄对应的数目胸径值。本发明专利技术通过直接构建树木胸径变化的数学模型,并利用实测数据对数学模型进行修正,从而实现树木胸径的快速、准确预测。

【技术实现步骤摘要】

本专利技术涉及农林
,尤其涉及一种树木胸径预测方法
技术介绍
树木的胸径预测,即估计当前种植的树木在几个月、几年后的胸径大小,对于苗木种植企业有着非常重要的意义。胸径大小是树木种植、移栽的植物学指标之一,同时也是苗木销售的最重要的经济指标。一家种植企业对所有种植基地的各个地块中树木胸径的预估,会极大的影响企业的种植和销售计划,从而对企业的效益产生很大的影响。目前,对于树木胸径的预测,主要依靠种植人员的经验,这种方式存在着经验很难量化、预测误差较大等问题。而如果使用环境模型来预测胸径的变化,又存在着模型复杂、生长环境各异、种植措施不同等问题,从而导致测量需求较大、模型参数较难确定。
技术实现思路
(一)要解决的技术问题鉴于上述技术问题,本专利技术提供了一种树木胸径预测方法,以提高树木胸径预测的准确性。(二)技术方案本专利技术树木胸径预测方法包括:步骤A:构建树木胸径变化的数学模型;步骤B:获得树木生长过程中至少四组树龄-胸径数据;步骤C:运用至少四组树龄-胸径数据对数学模型进行拟合,求取模型参数的值,得到完整的数学模型;以及步骤F:将未来感兴趣时间点的树龄带入所述数学模型中,得到该树龄对应的数目胸径值。优选地,本专利技术树木胸径预测方法中,所述步骤A中树木胸径变化的数学模型如下:F(t)=d+c∫0tbxa-1e-xdx]]>其中,F(t)为树木胸径,t表示树龄,a,b,c,d为待求模型参数。优选地,本专利技术树木胸径预测方法中,所述步骤B中至少四组树龄-胸径数据为按照预设时间周期采集的树龄-胸径数据。优选地,预设时间周期为:三个月、半年、一年或三年。优选地,本专利技术树木胸径预测方法中,所述步骤B中树龄-胸径数据多于6组,所述树龄以“年”为单位。优选地,本专利技术树木胸径预测方法中,所述步骤C中拟合的方法为:线性拟合或最小二乘法拟合。优选地,本专利技术树木胸径预测方法中,在步骤C之后,步骤F之前还包括:步骤D:测量当前树木胸径,得到当前时间点对应的树龄-胸径数据;步骤E:将当前时间点对应的树龄-胸径数据代入上述完整的数学模型,对其进行修正,得到修正后的数学模型;其中,所述步骤F中,所述数学模型为所述步骤E得到的修正后的数学模型。优选地,本专利技术树木胸径预测方法中,所述步骤E中,运用粒子滤波算法对完整的数学模型进行修正。(三)有益效果本专利技术通过直接构建树木胸径变化的数学模型,并利用实测数据对数学模型进行修正,从而实现树木胸径的快速、准确预测。附图说明图1为根据本专利技术实施例树木胸径预测方法的流程图;图2为图1所示树木胸径预测方法获得的完整的数学模型的曲线图。具体实施方式本专利技术通过构建胸径变化的数学模型,结合树木胸径的实测数据反求模型参数,实现树木胸径的预测。为使本专利技术的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本专利技术进一步详细说明。在本专利技术的一个示例性实施例中,提供了一种树木胸径预测方法。图1为根据本专利技术实施例树木胸径预测方法的流程图。请参照图1,本实施例树木胸径预测方法包括:步骤A:构建树木胸径变化的数学模型:F(t)=d+c∫0tbxa-1e-xdx]]>其中,F(t)为树木胸径,t表示树龄,a,b,c,d为模型参数。该树龄可以“年”为单位。步骤B:获得树木生长过程中的至少四组树龄-胸径数据;本步骤中,进行胸径测量一般定期进行,该时间周期可以根据树木种类和用户需要确定,如可以选择每三个月一次、每半年一次或每年一次。需要说明的是,虽然树龄-胸径数据至少为四组,但树龄-胸径数据的数目越多,拟合的曲线将更加准确。优选的,树龄-胸径数据大于6组。本实施例中,获取的8组胸径数据序列如下:(4cm,第4年);(4.46cm,第5年);(5.25cm,第6年);(6.32cm,第7年);(7.79cm,第8年);(9.34cm,第9年);(10.66cm,第10年);(11.83cm,第11年)。步骤C:运用至少四组树龄-胸径数据对数学模型进行拟合,求取模型参数的值,得到完整的数学模型;本实施例中,使用最小二乘法拟合,求得的参数为a=5.0,b=1.998,c=0.551,d=3.015。相应的完整的数学模型为:F(t)=3.015+0.551∫0t1.998x5.0-1e-xdx]]>拟合结果的曲线如附图2所示。本领域技术人员应当清楚,除了最小二乘法之外,还可以采用线性拟合等拟合方法获取数学模型的模型参数。步骤D:运用胸径测量仪测量当前树木胸径,得到当前时间点对应的树龄-胸径数据;步骤E:将当前时间点对应的树龄-胸径数据代入上述完整的数学模型,运用粒子滤波算法对其进行修正,得到修正后的数学模型;本领域技术人员应当清楚,在对树木胸径的预测精度不高的情况下,步骤D和步骤E均可以省略。步骤F:将未来感兴趣时间点的树龄带入上述修正后的数学模型中,得到该树龄对应的数目胸径值。本实施例中,需要知道第13年时树木胸径时多少,将树龄“13”感兴趣的是第13年的可预测第13年的胸径为F(13)=13.28。至此,已经结合附图对本实施例进行了详细描述。依据以上描述,本领域技术人员应当对本专利技术树木胸径预测方法有了清楚的认识。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属
中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。还需要说明的是,本文可提供包含特定值的参数的示范,但这些参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应值。除非特别描述或必须依序发生的步骤,上述步骤的顺序并无限制于以上所列,且可根据所需设计而变化或重新安排。并且上述实施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合搭配使用,即不同实施例中的技术特征可以自由组合形成更多的实施例。综上所述,本专利技术通过直接构建树木胸径变化的数学模型,并利用实测数据对数学模型进行修正,从而实现树木胸径的快速、准确预测,具有将强的实用价值。以上所述的具体实施例,对本专利技术的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本专利技术的具体实施例而已,并不用于限制本专利技术,凡在本专利技术的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本专利技术的保护范围之内。本文档来自技高网
...
树木胸径预测方法

【技术保护点】
一种树木胸径预测方法,其特征在于,包括:步骤A:构建树木胸径变化的数学模型;步骤B:获得树木生长过程中至少四组树龄‑胸径数据;步骤C:运用至少四组树龄‑胸径数据对数学模型进行拟合,求取模型参数的值,得到完整的数学模型;以及步骤F:将未来感兴趣时间点的树龄带入所述数学模型中,得到该树龄对应的数目胸径值。

【技术特征摘要】
1.一种树木胸径预测方法,其特征在于,包括:步骤A:构建树木胸径变化的数学模型;步骤B:获得树木生长过程中至少四组树龄-胸径数据;步骤C:运用至少四组树龄-胸径数据对数学模型进行拟合,求取模型参数的值,得到完整的数学模型;以及步骤F:将未来感兴趣时间点的树龄带入所述数学模型中,得到该树龄对应的数目胸径值。2.根据权利要求1所述的树木胸径预测方法,其特征在于,所述步骤A中树木胸径变化的数学模型如下:F(t)=d+c∫0tbxa-1e-xdx]]>其中,F(t)为树木胸径,t表示树龄,a,b,c,d为待求模型参数。3.根据权利要求1所述的树木胸径预测方法,其特征在于,所述步骤B中至少四组树龄-胸径数据为按照预设时间周期采集的树龄-胸径数据。4.根据权利要求3所述的树木胸径预测方法,...

【专利技术属性】
技术研发人员:华净康孟珍王秀娟王浩宇范兴容王飞跃
申请(专利权)人:青岛智能产业技术研究院
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1